open Netlist_gen
let zeroes n =
const (String.make n '0')
let one n =
const "1" ++ zeroes (n-1)
let two n =
const "01" ++ zeroes (n-2)
let rec rep n k =
if n = 1 then k
else
let s = rep (n/2) k in
if n mod 2 = 0 then s ++ s else s ++ s ++ k
let rec eq_c n v c = (* v is a value, c is a constant *)
if n = 1 then
if c = 1 then v else not v
else
(eq_c 1 (v ** 0) (c mod 2)) ^& (eq_c (n-1) (v % (1, n-1)) (c/2))
let rec all1 n x =
if n = 1 then
x
else
(x ** 0) ^& (all1 (n-1) (x % (1, n-1)))
let rec nonnull n a =
if n = 1 then
a
else
(a ** 0) ^| (nonnull (n-1) (a % (1, n-1)))
let rec sign_extend n_a n_dest a =
a ++ rep (n_dest - n_a) (a ** (n_a - 1))
(* Arithmetic operations *)
let fulladder a b c =
let s = a ^^ b ^^ c in
let r = (a ^& b) ^| ((a ^^ b) ^& c) in
s, r
let rec nadder_with_carry n a b c_in =
if n = 1 then fulladder a b c_in
else
let s_n, c_n1 = fulladder (a ** 0) (b ** 0) c_in in
let s_n1, c_out = nadder_with_carry (n-1) (a % (1, n-1)) (b % (1, n-1)) c_n1 in
s_n ++ s_n1, c_out
let nadder n a b =
let a, b = nadder_with_carry n a b (const "0") in
b ^. a
let neg n a = nadder n (not a) (one n)
let rec nsubber n a b =
let r, c = nadder_with_carry n a (not b) (const "1") in
c ^. r
(* Some operations on Redundant Binary Representation
Each binary digit is encoded on 2 bits
A n-digits number in RBR is written
[a_0, a'_0, a_1, a'_1, ..., a_(n-1), a'_(n-1)]
*)
(* [a] and [b] are encoded on 2n bits
[c_in] and [c_out] on 2 bits *)
let rec rbr_nadder_with_carry n a b c_in =
if n = 0 then (zeroes 0), c_in else
let fa1s, fa1r = fulladder (a ** 1) (b ** 0) (b ** 1) in
let fa2s, fa2r = fulladder (c_in ** 1) (a ** 0) fa1s in
let rec_s, rec_c =
rbr_nadder_with_carry (n - 1)
(a % (2, 2*n - 1))
(b % (2, 2*n - 1))
(fa1r ++ fa2r)
in (c_in ** 0) ++ fa2s ++ rec_s, rec_c
let rbr_nadder n a b =
let s, c = rbr_nadder_with_carry n a b (zeroes 2) in
c ^. s
let bin_of_rbr n a c =
(* Split even and odd bits *)
let rec split_bits n a =
if n = 0 then (zeroes 0, zeroes 0)
else
let even, odd = split_bits (n-1) (a % (2, 2*n - 1)) in
(a ** 0) ++ even, (a ** 1) ++ odd
in
let a_even, a_odd = split_bits n a in
nadder n a_even a_odd
(* TODO : move to utils module *)
let rec range a b = if a > b then [] else a :: (range (a+1) b)
(* Sépare en deux listes de même taille une liste de taille paire *)
let rec split_list = function
| [] -> [], []
| [_] -> assert false
| x::y::tl -> let a, b = split_list tl in x::a, y::b
(* n must be a power of two *)
(*
let nmul n a b =
let summands = List.map (fun i ->
mux (b ** i)
(zeroes (2*n))
((zeroes i) ++ a ++ (zeroes (n - i)))
) (range 0 (n-1)) in
let rec sum_list = function
| [x] -> x
| l ->
let s1, s2 = split_list l in
nadder (2*n) (sum_list s1) (sum_list s2)
in let r = List.fold_left (nadder (2*n)) (List.hd summands) (List.tl summands) in
(*in
let r = sum_list summands in*)
(r % (0, n-1)), (r % (n, 2*n - 1))
*)
let nmul n a b =
let nn = 2*n in
let result = ref (zeroes (nn)) in
for i = 0 to n-1 do
result := mux (b ** i) !result (nadder nn !result ((zeroes i) ++ a ++ (zeroes (n-i))))
done;
let r = !result in
r % (0, n-1), r % (n, nn-1)
let rec ndiv n a b =
zeroes n, zeroes n (* TODO : returns quotient and remainder *)
let rec nmulu n a b =
zeroes n, zeroes n (* TODO : same as nmul but unsigned *)
let rec ndivu n a b =
zeroes n, zeroes n (* TODO : save as ndiv but unsigned *)
(* Shifts *)
let npshift_signed n p a b =
a (* TODO (here b is a signed integer on p bits) *)
let op_lsl n a b =
a (* TODO (b is unsigned, same size n) *)
let op_lsr n a b =
a (* TODO (b is unsigned, same size n) *)
let op_asr n a b =
a (* TODO (b unsigned size n) *)
(* Comparisons *)
let rec eq_n n a b =
all1 n (not (a ^^ b))
let rec ne_n n a b =
nonnull n (a ^^ b)
let rec lt_n n a b =
const "0" (* TODO : less than *)
let rec ult_n n a b =
const "0" (* TODO : less than, unsigned *)
let rec le_n n a b =
const "0" (* TODO : less than or equal *)
let rec ule_n n a b =
const "0" (* TODO : less than or equal, unsigned *)
(* Big pieces *)
let alu_comparer n f0 f a b =
(*
f0 f action
-- - ------
0 0 equal
0 1 not equal
0 2 equal
0 3 not equal
1 0 lt
1 1 le
1 2 lt unsigned
1 3 le unsigned
*)
let eq_ne = mux (f ** 0) (eq_n n a b) (ne_n n a b) in
let lte_signed = mux (f ** 0) (lt_n n a b) (le_n n a b) in
let lte_unsigned = mux (f ** 0) (ult_n n a b) (ule_n n a b) in
let lte = mux (f ** 1) lte_signed lte_unsigned in
mux f0 eq_ne lte
let alu_arith f1 f a b =
(* See table for ALU below *)
let add = nadder 16 a b in
let sub = nsubber 16 a b in
let mul, mul2 = nmul 16 a b in
let div, div2 = ndiv 16 a b in
let mulu, mulu2 = nmulu 16 a b in
let divu, divu2 = ndivu 16 a b in
let q00 = mux (f ** 0) add sub in
let q01 = mux (f ** 0) mul div in
let q03 = mux (f ** 0) mulu divu in
let q10 = mux (f ** 1) q00 q01 in
let q11 = mux (f ** 1) q00 q03 in
let q = mux f1 q10 q11 in
let r01 = mux (f ** 0) mul2 div2 in
let r03 = mux (f ** 0) mulu2 divu2 in
let r10 = mux (f ** 1) (zeroes 16) r01 in
let r11 = mux (f ** 1) (zeroes 16) r03 in
let r = mux f1 r10 r11 in
q, r
let alu_logic f a b =
(* See table for ALU below *)
let q0 = mux (f ** 0) (a ^| b) (a ^& b) in
let q1 = mux (f ** 0) (a ^^ b) (not (a ^| b)) in
mux (f ** 1) q0 q1
let alu_shifts f a b =
(* See table for ALU below *)
let q1 = mux (f ** 0) (op_lsr 16 a b) (op_asr 16 a b) in
mux (f ** 1) (op_lsl 16 a b) q1
let alu f1 f0 f a b =
(*
f0 f1 f action
-- -- - ------
0 0 0 add
0 0 1 sub
0 0 2 mul
0 0 3 div
0 1 0 addu
0 1 1 subu
0 1 2 mulu
0 1 3 divu
1 0 0 or
1 0 1 and
1 0 2 xor
1 0 3 nor
1 1 0 lsl
1 1 1 lsl
1 1 2 lsr
1 1 3 asr
*)
let arith, arith_r = alu_arith f1 f a b in
let logic = alu_logic f a b in
let shifts = alu_shifts f a b in
let q0 = mux f1 logic shifts in
let s = mux f0 arith q0 in
let r = mux f0 arith_r (zeroes 16) in
s, r