open Netlist_gen let zeroes n = const (String.make n '0') let one n = const "1" ++ zeroes (n-1) let two n = const "01" ++ zeroes (n-2) let rec rep n k = if n = 1 then k else let s = rep (n/2) k in if n mod 2 = 0 then s ++ s else s ++ s ++ k let rec eq_c n v c = (* v is a value, c is a constant *) if n = 1 then if c = 1 then v else not v else (eq_c 1 (v ** 0) (c mod 2)) ^& (eq_c (n-1) (v % (1, n-1)) (c/2)) let rec all1 n x = if n = 1 then x else (x ** 0) ^& (all1 (n-1) (x % (1, n-1))) let rec nonnull n a = if n = 1 then a else (a ** 0) ^| (nonnull (n-1) (a % (1, n-1))) let rec sign_extend n_a n_dest a = a ++ rep (n_dest - n_a) (a ** (n_a - 1)) (* Arithmetic operations *) let fulladder a b c = let s = a ^^ b ^^ c in let r = (a ^& b) ^| ((a ^^ b) ^& c) in s, r let rec nadder_with_carry n a b c_in = if n = 1 then fulladder a b c_in else let s_n, c_n1 = fulladder (a ** 0) (b ** 0) c_in in let s_n1, c_out = nadder_with_carry (n-1) (a % (1, n-1)) (b % (1, n-1)) c_n1 in s_n ++ s_n1, c_out let nadder n a b = let a, b = nadder_with_carry n a b (const "0") in b ^. a let neg n a = nadder n (not a) (one n) let rec nsubber n a b = let r, c = nadder_with_carry n a (not b) (const "1") in c ^. r (* Some operations on Redundant Binary Representation Each binary digit is encoded on 2 bits A n-digits number in RBR is written [a_0, a'_0, a_1, a'_1, ..., a_(n-1), a'_(n-1)] *) (* [a] and [b] are encoded on 2n bits [c_in] and [c_out] on 2 bits *) let rec rbr_nadder_with_carry n a b c_in = if n = 0 then (zeroes 0), c_in else let fa1s, fa1r = fulladder (a ** 1) (b ** 0) (b ** 1) in let fa2s, fa2r = fulladder (c_in ** 1) (a ** 0) fa1s in let rec_s, rec_c = rbr_nadder_with_carry (n - 1) (a % (2, 2*n - 1)) (b % (2, 2*n - 1)) (fa1r ++ fa2r) in (c_in ** 0) ++ fa2s ++ rec_s, rec_c let rbr_nadder n a b = let s, c = rbr_nadder_with_carry n a b (zeroes 2) in c ^. s let bin_of_rbr n a c = (* Split even and odd bits *) let rec split_bits n a = if n = 0 then (zeroes 0, zeroes 0) else let even, odd = split_bits (n-1) (a % (2, 2*n - 1)) in (a ** 0) ++ even, (a ** 1) ++ odd in let a_even, a_odd = split_bits n a in nadder n a_even a_odd (* TODO : move to utils module *) let rec range a b = if a > b then [] else a :: (range (a+1) b) (* Sépare en deux listes de même taille une liste de taille paire *) let rec split_list = function | [] -> [], [] | [_] -> assert false | x::y::tl -> let a, b = split_list tl in x::a, y::b (* n must be a power of two *) (* let nmul n a b = let summands = List.map (fun i -> mux (b ** i) (zeroes (2*n)) ((zeroes i) ++ a ++ (zeroes (n - i))) ) (range 0 (n-1)) in let rec sum_list = function | [x] -> x | l -> let s1, s2 = split_list l in nadder (2*n) (sum_list s1) (sum_list s2) in let r = List.fold_left (nadder (2*n)) (List.hd summands) (List.tl summands) in (*in let r = sum_list summands in*) (r % (0, n-1)), (r % (n, 2*n - 1)) *) let nmul n a b = let nn = 2*n in let result = ref (zeroes (nn)) in for i = 0 to n-1 do result := mux (b ** i) !result (nadder nn !result ((zeroes i) ++ a ++ (zeroes (n-i)))) done; let r = !result in r % (0, n-1), r % (n, nn-1) let rec ndiv n a b = zeroes n, zeroes n (* TODO : returns quotient and remainder *) let rec nmulu n a b = zeroes n, zeroes n (* TODO : same as nmul but unsigned *) let rec ndivu n a b = zeroes n, zeroes n (* TODO : save as ndiv but unsigned *) (* Shifts *) let npshift_signed n p a b = a (* TODO (here b is a signed integer on p bits) *) let op_lsl n a b = a (* TODO (b is unsigned, same size n) *) let op_lsr n a b = a (* TODO (b is unsigned, same size n) *) let op_asr n a b = a (* TODO (b unsigned size n) *) (* Comparisons *) let rec eq_n n a b = all1 n (not (a ^^ b)) let rec ne_n n a b = nonnull n (a ^^ b) let rec lt_n n a b = const "0" (* TODO : less than *) let rec ult_n n a b = const "0" (* TODO : less than, unsigned *) let rec le_n n a b = const "0" (* TODO : less than or equal *) let rec ule_n n a b = const "0" (* TODO : less than or equal, unsigned *) (* Big pieces *) let alu_comparer n f0 f a b = (* f0 f action -- - ------ 0 0 equal 0 1 not equal 0 2 equal 0 3 not equal 1 0 lt 1 1 le 1 2 lt unsigned 1 3 le unsigned *) let eq_ne = mux (f ** 0) (eq_n n a b) (ne_n n a b) in let lte_signed = mux (f ** 0) (lt_n n a b) (le_n n a b) in let lte_unsigned = mux (f ** 0) (ult_n n a b) (ule_n n a b) in let lte = mux (f ** 1) lte_signed lte_unsigned in mux f0 eq_ne lte let alu_arith f1 f a b = (* See table for ALU below *) let add = nadder 16 a b in let sub = nsubber 16 a b in let mul, mul2 = nmul 16 a b in let div, div2 = ndiv 16 a b in let mulu, mulu2 = nmulu 16 a b in let divu, divu2 = ndivu 16 a b in let q00 = mux (f ** 0) add sub in let q01 = mux (f ** 0) mul div in let q03 = mux (f ** 0) mulu divu in let q10 = mux (f ** 1) q00 q01 in let q11 = mux (f ** 1) q00 q03 in let q = mux f1 q10 q11 in let r01 = mux (f ** 0) mul2 div2 in let r03 = mux (f ** 0) mulu2 divu2 in let r10 = mux (f ** 1) (zeroes 16) r01 in let r11 = mux (f ** 1) (zeroes 16) r03 in let r = mux f1 r10 r11 in q, r let alu_logic f a b = (* See table for ALU below *) let q0 = mux (f ** 0) (a ^| b) (a ^& b) in let q1 = mux (f ** 0) (a ^^ b) (not (a ^| b)) in mux (f ** 1) q0 q1 let alu_shifts f a b = (* See table for ALU below *) let q1 = mux (f ** 0) (op_lsr 16 a b) (op_asr 16 a b) in mux (f ** 1) (op_lsl 16 a b) q1 let alu f1 f0 f a b = (* f0 f1 f action -- -- - ------ 0 0 0 add 0 0 1 sub 0 0 2 mul 0 0 3 div 0 1 0 addu 0 1 1 subu 0 1 2 mulu 0 1 3 divu 1 0 0 or 1 0 1 and 1 0 2 xor 1 0 3 nor 1 1 0 lsl 1 1 1 lsl 1 1 2 lsr 1 1 3 asr *) let arith, arith_r = alu_arith f1 f a b in let logic = alu_logic f a b in let shifts = alu_shifts f a b in let q0 = mux f1 logic shifts in let s = mux f0 arith q0 in let r = mux f0 arith_r (zeroes 16) in s, r