diff options
author | Alex Auvolat <alex.auvolat@ens.fr> | 2015-06-19 15:59:09 -0400 |
---|---|---|
committer | Alex Auvolat <alex.auvolat@ens.fr> | 2015-06-19 15:59:09 -0400 |
commit | 7bf692d9ae344ccef044923f131f5ce8de85b0b4 (patch) | |
tree | 227af7599d2ef24bbc4bd6c4de5be384969fa139 | |
parent | de89d218940295f834523dfcfd6840965a63dda5 (diff) | |
download | text-rnn-7bf692d9ae344ccef044923f131f5ce8de85b0b4.tar.gz text-rnn-7bf692d9ae344ccef044923f131f5ce8de85b0b4.zip |
Something that does not really work
-rw-r--r-- | dgsrnn.py | 41 | ||||
-rw-r--r-- | gfgru.py | 5 | ||||
-rwxr-xr-x | train.py | 17 |
3 files changed, 35 insertions, 28 deletions
@@ -29,27 +29,25 @@ io_dim = 256 state_dim = 1024 activation = Tanh() transition_hidden = [1024, 1024] -transition_hidden_activations = [Tanh(), Tanh()] - -max_reset = 0.8 +transition_hidden_activations = [Rectifier(), Rectifier()] output_hidden = [] output_hidden_activations = [] weight_noise_std = 0.05 -output_h_dropout = 0.0 +output_h_dropout = 0.5 -l1_state = 0.1 -l1_reset = 1 +l1_state = 0.01 +l1_reset = 0.01 -step_rule = 'adam' -learning_rate = 0.1 +step_rule = 'momentum' +learning_rate = 0.01 momentum = 0.99 -param_desc = '%s,t%s,o%s,mr%s-n%s-d%s-L1:%s,%s-%s' % ( - repr(state_dim), repr(transition_hidden), repr(output_hidden), repr(max_reset), +param_desc = '%s,t%s,o%s-n%s-d%s-L1:%s,%s-%s' % ( + repr(state_dim), repr(transition_hidden), repr(output_hidden), repr(weight_noise_std), repr(output_h_dropout), repr(l1_state), repr(l1_reset), @@ -78,24 +76,25 @@ else: class DGSRNN(BaseRecurrent, Initializable): - def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, max_reset, **kwargs): + def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, **kwargs): super(DGSRNN, self).__init__(**kwargs) self.input_dim = input_dim self.state_dim = state_dim - self.max_reset = max_reset + + logistic = Logistic() self.inter = MLP(dims=[input_dim + state_dim] + transition_h, activations=tr_h_activations, name='inter') self.reset = MLP(dims=[transition_h[-1], state_dim], - activations=[Logistic()], + activations=[logistic], name='reset') self.update = MLP(dims=[transition_h[-1], state_dim], activations=[act], name='update') - self.children = [self.inter, self.reset, self.update] + self.children = [self.inter, self.reset, self.update, logistic, act] + tr_h_activations # init state self.params = [shared_floatx_zeros((state_dim,), name='init_state')] @@ -109,16 +108,14 @@ class DGSRNN(BaseRecurrent, Initializable): @recurrent(sequences=['inputs'], states=['state'], outputs=['state', 'reset'], contexts=[]) def apply(self, inputs=None, state=None): - inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1)) reset_v = self.reset.apply(inter_v) update_v = self.update.apply(inter_v) - new_state = state * (1 - max_reset * reset_v) + update_v + new_state = state * (1 - reset_v) + reset_v * update_v return new_state, reset_v - @application def initial_state(self, state_name, batch_size, *args, **kwargs): return tensor.repeat(self.params[0][None, :], @@ -126,7 +123,6 @@ class DGSRNN(BaseRecurrent, Initializable): axis=0) - class Model(): def __init__(self): inp = tensor.lmatrix('bytes') @@ -140,7 +136,6 @@ class Model(): act=activation, transition_h=transition_hidden, tr_h_activations=transition_hidden_activations, - max_reset=max_reset, name='dgsrnn') prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX), @@ -169,12 +164,12 @@ class Model(): # Initialize all bricks for brick in [dgsrnn, out_mlp]: - brick.weights_init = IsotropicGaussian(0.01) - brick.biases_init = Constant(0.001) + brick.weights_init = IsotropicGaussian(0.001) + brick.biases_init = Constant(0.0) brick.initialize() # Apply noise and dropout - cg = ComputationGraph([cost, error_rate]) + cg = ComputationGraph([cost, error_rate, states, resets]) if weight_noise_std > 0: noise_vars = VariableFilter(roles=[WEIGHT])(cg) cg = apply_noise(cg, noise_vars, weight_noise_std) @@ -182,7 +177,7 @@ class Model(): dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg) print "Output H dropout on", len(dv), "vars" cg = apply_dropout(cg, dv, output_h_dropout) - [cost_reg, error_rate_reg] = cg.outputs + [cost_reg, error_rate_reg, states, resets] = cg.outputs if l1_state > 0: cost_reg = cost_reg + l1_state * abs(states).mean() @@ -29,9 +29,8 @@ io_dim = 256 recurrent_blocks = [ # (256, Tanh(), [2048], [Rectifier()]), # (512, Rectifier(), [1024], [Rectifier()]), - (512, Tanh(), [2048], [TRectifier()]), - (512, Tanh(), [2048], [TRectifier()]), - (512, Tanh(), [2048], [TRectifier()]), + (512, Tanh(), [1024], [Rectifier()]), + (512, Tanh(), [1024], [Rectifier()]), # (2, Tanh(), [2], [Rectifier()]), # (2, Tanh(), [], []), ] @@ -19,7 +19,7 @@ from blocks.extensions.saveload import Checkpoint, Load from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model -from blocks.algorithms import GradientDescent +from blocks.algorithms import GradientDescent, StepRule, CompositeRule import datastream from paramsaveload import SaveLoadParams @@ -38,6 +38,17 @@ if __name__ == "__main__": model_name = sys.argv[1] config = importlib.import_module('%s' % model_name) + +class ElementwiseRemoveNotFinite(StepRule): + def __init__(self, scaler=0.1): + self.scaler = scaler + + def compute_step(self, param, previous_step): + not_finite = tensor.isnan(previous_step) + tensor.isinf(previous_step) + step = tensor.switch(not_finite, self.scaler * param, previous_step) + + return step, [] + class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): super(ResetStates, self).__init__(**kwargs) @@ -56,7 +67,9 @@ def train_model(m, train_stream, dump_path=None): cg = ComputationGraph(m.cost_reg) algorithm = GradientDescent(cost=m.cost_reg, - step_rule=config.step_rule, + step_rule=CompositeRule([ + ElementwiseRemoveNotFinite(), + config.step_rule]), params=cg.parameters) algorithm.add_updates(m.states) |