1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
import theano
from theano import tensor
import numpy
from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
from blocks.bricks.base import application, lazy
from blocks.bricks.recurrent import BaseRecurrent, recurrent
from blocks.initialization import IsotropicGaussian, Constant
from blocks.utils import shared_floatx_zeros
from blocks.filter import VariableFilter
from blocks.roles import WEIGHT, INITIAL_STATE, add_role
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
class TRectifier(Activation):
@application(inputs=['input_'], outputs=['output'])
def apply(self, input_):
return tensor.switch(input_ > 1, input_, 0)
# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
# divided in chunks of lengh 'seq_div_size'
num_seqs = 10
seq_len = 2000
seq_div_size = 100
io_dim = 256
recurrent_blocks = [
# (256, Tanh(), [2048], [Rectifier()]),
# (512, Rectifier(), [1024], [Rectifier()]),
(512, Tanh(), [2048], [TRectifier()]),
(512, Tanh(), [2048], [TRectifier()]),
(512, Tanh(), [2048], [TRectifier()]),
# (2, Tanh(), [2], [Rectifier()]),
# (2, Tanh(), [], []),
]
control_hidden = [1024]
control_hidden_activations = [Rectifier()]
output_hidden = [1024]
output_hidden_activations = [Rectifier()]
weight_noise_std = 0.05
recurrent_h_dropout = 0
control_h_dropout = 0
output_h_dropout = 0.5
step_rule = 'adam'
learning_rate = 0.1
momentum = 0.99
param_desc = '%s,c%s,o%s-n%s-d%s,%s,%s-%s' % (
repr(map(lambda (a, b, c, d): (a, c), recurrent_blocks)),
repr(control_hidden), repr(output_hidden),
repr(weight_noise_std),
repr(recurrent_h_dropout), repr(control_h_dropout), repr(output_h_dropout),
step_rule
)
save_freq = 5
on_irc = False
# parameters for sample generation
sample_len = 100
sample_temperature = 0.7 #0.5
sample_freq = 1
if step_rule == 'rmsprop':
step_rule = RMSProp()
elif step_rule == 'adadelta':
step_rule = AdaDelta()
elif step_rule == 'momentum':
step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
elif step_rule == 'adam':
step_rule = Adam()
else:
assert(False)
class GFGRU(BaseRecurrent, Initializable):
def __init__(self, input_dim, recurrent_blocks, control_hidden, control_hidden_activations, **kwargs):
super(GFGRU, self).__init__(**kwargs)
self.input_dim = input_dim
self.recurrent_blocks = recurrent_blocks
self.control_hidden = control_hidden
self.control_hidden_activations = control_hidden_activations
# setup children
self.children = control_hidden_activations
for (_, a, _, b) in recurrent_blocks:
self.children.append(a)
for c in b:
self.children.append(c)
logistic = Logistic()
self.children.append(logistic)
self.hidden_total_dim = sum(x for (x, _, _, _) in self.recurrent_blocks)
# control block
self.cblocklen = len(self.recurrent_blocks) + 2
control_idim = self.hidden_total_dim + self.input_dim
control_odim = len(self.recurrent_blocks) * self.cblocklen
self.control = MLP(dims=[control_idim] + self.control_hidden + [control_odim],
activations=self.control_hidden_activations + [logistic],
name='control')
self.children.append(self.control)
# recurrent blocks
self.blocks = []
self.params = []
for i, (dim, act, hdim, hact) in enumerate(self.recurrent_blocks):
idim = self.input_dim + self.hidden_total_dim
if i > 0:
idim = idim + self.recurrent_blocks[i-1][0]
idims = [idim] + hdim
if hdim == []:
inter = Identity()
else:
inter = MLP(dims=idims, activations=hact, name='inter%d'%i)
rgate = MLP(dims=[idims[-1], dim], activations=[logistic], name='rgate%d'%i)
nstate = MLP(dims=[idims[-1], dim], activations=[act], name='nstate%d'%i)
for brick in [inter, rgate, nstate]:
self.children.append(brick)
self.blocks.append((inter, rgate, nstate))
# init state zeros
self.init_states_names = []
self.init_states_dict = {}
self.params = []
for i, (dim, _, _, _) in enumerate(self.recurrent_blocks):
name = 'init_state_%d'%i
svar = shared_floatx_zeros((dim,), name=name)
add_role(svar, INITIAL_STATE)
self.init_states_names.append(name)
self.init_states_dict[name] = svar
self.params.append(svar)
def get_dim(self, name):
if name in self.init_states_dict:
return self.init_states_dict[name].shape.eval()
return super(GFGRU, self).get_dim(name)
def recurrent_h_dropout_vars(self, cg):
ret = []
for (inter, rgate, nstate) in self.blocks:
ret = ret + VariableFilter(name='input_',
bricks=inter.linear_transformations + rgate.linear_transformations + nstate.linear_transformations
)(cg)
return ret
def control_h_dropout_vars(self, cg):
return VariableFilter(name='input_', bricks=self.control.linear_transformations)(cg)
@recurrent(sequences=['inputs'], contexts=[])
def apply(self, inputs=None, **kwargs):
states = [kwargs[i] for i in self.init_states_names]
concat_states = tensor.concatenate(states, axis=1)
concat_input_states = tensor.concatenate([inputs, concat_states], axis=1)
control_v = self.control.apply(concat_input_states)
new_states = []
for i, (inter, rgate, nstate) in enumerate(self.blocks):
controls = control_v[:, i * self.cblocklen:(i+1) * self.cblocklen]
r_inputs = tensor.concatenate([s * controls[:, j][:, None] for j, s in enumerate(states)], axis=1)
more_inputs = [inputs]
if i > 0:
more_inputs.append(new_states[-1])
inter_inputs = tensor.concatenate([r_inputs] + more_inputs, axis=1)
inter_v = inter.apply(inter_inputs)
rgate_v = rgate.apply(inter_v)
nstate_v = nstate.apply(inter_v)
rctl = controls[:, -1][:, None] * rgate_v
uctl = controls[:, -2][:, None]
nstate_v = uctl * nstate_v + (1 - rctl) * states[i]
new_states.append(nstate_v)
return new_states
@apply.property('states')
def apply_states(self):
return self.init_states_names
@apply.property('outputs')
def apply_outputs(self):
return self.init_states_names
@application
def initial_state(self, state_name, batch_size, *args, **kwargs):
return tensor.repeat(self.init_states_dict[state_name][None, :],
repeats=batch_size,
axis=0)
class Model():
def __init__(self):
inp = tensor.lmatrix('bytes')
in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
inp[:, :, None])
in_onehot.name = 'in_onehot'
gfgru = GFGRU(input_dim=io_dim,
recurrent_blocks=recurrent_blocks,
control_hidden=control_hidden,
control_hidden_activations=control_hidden_activations)
hidden_total_dim = sum(x for (x, _, _, _) in recurrent_blocks)
prev_states_dict = {}
for i, (dim, _, _, _) in enumerate(recurrent_blocks):
prev_state = theano.shared(numpy.zeros((num_seqs, dim)).astype(theano.config.floatX),
name='states_save')
prev_states_dict['init_state_%d'%i] = prev_state
states = [x.dimshuffle(1, 0, 2) for x in gfgru.apply(in_onehot.dimshuffle(1, 0, 2), **prev_states_dict)]
self.states = []
for i, _ in enumerate(recurrent_blocks):
self.states.append((prev_states_dict['init_state_%d'%i], states[i][:, -1, :]))
states_concat = tensor.concatenate(states, axis=2)
out_mlp = MLP(dims=[hidden_total_dim] + output_hidden + [io_dim],
activations=output_hidden_activations + [None],
name='output_mlp')
states_sh = states_concat.reshape((inp.shape[0]*inp.shape[1], hidden_total_dim))
out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim))
# Do prediction and calculate cost
pred = out.argmax(axis=2)
cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
io_dim)))
error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
# Initialize all bricks
for brick in [gfgru, out_mlp]:
brick.weights_init = IsotropicGaussian(0.01)
brick.biases_init = Constant(0.001)
brick.initialize()
# Apply noise and dropout
cg = ComputationGraph([cost, error_rate])
if weight_noise_std > 0:
noise_vars = VariableFilter(roles=[WEIGHT])(cg)
cg = apply_noise(cg, noise_vars, weight_noise_std)
if recurrent_h_dropout > 0:
dv = gfgru.recurrent_h_dropout_vars(cg)
print "Recurrent H dropout on", len(dv), "vars"
cg = apply_dropout(cg, dv, recurrent_h_dropout)
if control_h_dropout > 0:
dv = gfgru.control_h_dropout_vars(cg)
print "Control H dropout on", len(dv), "vars"
cg = apply_dropout(cg, dv, control_h_dropout)
if output_h_dropout > 0:
dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg)
print "Output H dropout on", len(dv), "vars"
cg = apply_dropout(cg, dv, output_h_dropout)
[cost_reg, error_rate_reg] = cg.outputs
self.cost = cost
self.error_rate = error_rate
self.cost_reg = cost_reg
self.error_rate_reg = error_rate_reg
self.out = out
self.pred = pred
|