aboutsummaryrefslogtreecommitdiff
path: root/train.py
blob: 4cbd52633e11832952a73398d97d2c89361c8c93 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import logging
import os
import sys
import importlib
from argparse import ArgumentParser

import csv

import numpy

import theano
from theano import printing
from theano import tensor
from theano.ifelse import ifelse

from blocks.filter import VariableFilter

from blocks.model import Model

from fuel.datasets.hdf5 import H5PYDataset
from fuel.transformers import Batch
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme, SequentialExampleScheme, ShuffledExampleScheme

from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.extensions import Printing, FinishAfter
from blocks.extensions.saveload import Dump, LoadFromDump, Checkpoint
from blocks.extensions.monitoring import DataStreamMonitoring

import data
import transformers
import apply_model

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
        sys.exit(1)
    model_name = sys.argv[1]
    config = importlib.import_module(model_name)


def setup_train_stream(req_vars):
    # Load the training and test data
    train = H5PYDataset(data.H5DATA_PATH,
                        which_set='train',
                        subset=slice(0, data.dataset_size),
                        load_in_memory=True)
    train = DataStream(train, iteration_scheme=ShuffledExampleScheme(data.dataset_size))

    train = transformers.TaxiExcludeTrips(data.valid_trips, train)
    train = transformers.TaxiGenerateSplits(train, max_splits=100)

    train = transformers.TaxiAddDateTime(train)
    train = transformers.TaxiAddFirstK(config.n_begin_end_pts, train)
    train = transformers.TaxiAddLastK(config.n_begin_end_pts, train)
    train = transformers.Select(train, tuple(req_vars))

    train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size))

    return train_stream

def setup_valid_stream(req_vars):
    valid = DataStream(data.valid_data)

    valid = transformers.TaxiAddDateTime(valid)
    valid = transformers.TaxiAddFirstK(config.n_begin_end_pts, valid)
    valid = transformers.TaxiAddLastK(config.n_begin_end_pts, valid)
    valid = transformers.Select(valid, tuple(req_vars))

    valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000))
    
    return valid_stream

def setup_test_stream(req_vars):
    test = DataStream(data.test_data)
    
    test = transformers.TaxiAddDateTime(test)
    test = transformers.TaxiAddFirstK(config.n_begin_end_pts, test)
    test = transformers.TaxiAddLastK(config.n_begin_end_pts, test)
    test = transformers.Select(test, tuple(req_vars))

    test_stream = Batch(test, iteration_scheme=ConstantScheme(1000))

    return test_stream


def main():
    model = config.model.Model(config)

    cost = model.cost
    outputs = model.outputs

    req_vars = model.require_inputs + model.pred_vars
    req_vars_test = model.require_inputs + [ 'trip_id' ]

    train_stream = setup_train_stream(req_vars)
    valid_stream = setup_valid_stream(req_vars)

    # Training
    cg = ComputationGraph(cost)
    params = cg.parameters # VariableFilter(bricks=[Linear])(cg.parameters) 
    algorithm = GradientDescent(
        cost=cost,
        # step_rule=AdaDelta(decay_rate=0.5),
        step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum),
        params=params)

    extensions=[DataStreamMonitoring(model.monitor, valid_stream,
                                     prefix='valid',
                                     every_n_batches=1000),
                Printing(every_n_batches=1000),
                # Checkpoint('model.pkl', every_n_batches=100),
                Dump('model_data/' + model_name, every_n_batches=1000),
                LoadFromDump('model_data/' + model_name),
                FinishAfter(after_epoch=42),
                ]

    main_loop = MainLoop(
        model=Model([cost]),
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=extensions)
    main_loop.run()
    main_loop.profile.report()

    # Produce an output on the test data
    test_stream = setup_test_stream(req_vars_test)

    outfile = open("output/test-output-%s.csv" % model_name, "w")
    outcsv = csv.writer(outfile)
    if model.pred_vars == ['time']:
        outcsv.writerow(["TRIP_ID", "TRAVEL_TIME"])
        for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']):
            time = out['outputs']
            for i, trip in enumerate(out['trip_id']):
                outcsv.writerow([trip, int(time[i, 0])])
    else:
        outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"])
        for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']):
            dest = out['outputs']
            for i, trip in enumerate(out['trip_id']):
                outcsv.writerow([trip, repr(dest[i, 0]), repr(dest[i, 1])])
    outfile.close()


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()