import logging import os import sys import importlib from argparse import ArgumentParser import csv import numpy import theano from theano import printing from theano import tensor from theano.ifelse import ifelse from blocks.filter import VariableFilter from blocks.model import Model from fuel.datasets.hdf5 import H5PYDataset from fuel.transformers import Batch from fuel.streams import DataStream from fuel.schemes import ConstantScheme, SequentialExampleScheme, ShuffledExampleScheme from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.extensions import Printing, FinishAfter from blocks.extensions.saveload import Dump, LoadFromDump, Checkpoint from blocks.extensions.monitoring import DataStreamMonitoring import data import transformers import apply_model if __name__ == "__main__": if len(sys.argv) != 2: print >> sys.stderr, 'Usage: %s config' % sys.argv[0] sys.exit(1) model_name = sys.argv[1] config = importlib.import_module(model_name) def setup_train_stream(req_vars): # Load the training and test data train = H5PYDataset(data.H5DATA_PATH, which_set='train', subset=slice(0, data.dataset_size), load_in_memory=True) train = DataStream(train, iteration_scheme=ShuffledExampleScheme(data.dataset_size)) train = transformers.TaxiExcludeTrips(data.valid_trips, train) train = transformers.TaxiGenerateSplits(train, max_splits=100) train = transformers.TaxiAddDateTime(train) train = transformers.TaxiAddFirstK(config.n_begin_end_pts, train) train = transformers.TaxiAddLastK(config.n_begin_end_pts, train) train = transformers.Select(train, tuple(req_vars)) train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size)) return train_stream def setup_valid_stream(req_vars): valid = DataStream(data.valid_data) valid = transformers.TaxiAddDateTime(valid) valid = transformers.TaxiAddFirstK(config.n_begin_end_pts, valid) valid = transformers.TaxiAddLastK(config.n_begin_end_pts, valid) valid = transformers.Select(valid, tuple(req_vars)) valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000)) return valid_stream def setup_test_stream(req_vars): test = DataStream(data.test_data) test = transformers.TaxiAddDateTime(test) test = transformers.TaxiAddFirstK(config.n_begin_end_pts, test) test = transformers.TaxiAddLastK(config.n_begin_end_pts, test) test = transformers.Select(test, tuple(req_vars)) test_stream = Batch(test, iteration_scheme=ConstantScheme(1000)) return test_stream def main(): model = config.model.Model(config) cost = model.cost outputs = model.outputs req_vars = model.require_inputs + model.pred_vars req_vars_test = model.require_inputs + [ 'trip_id' ] train_stream = setup_train_stream(req_vars) valid_stream = setup_valid_stream(req_vars) # Training cg = ComputationGraph(cost) params = cg.parameters # VariableFilter(bricks=[Linear])(cg.parameters) algorithm = GradientDescent( cost=cost, # step_rule=AdaDelta(decay_rate=0.5), step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum), params=params) extensions=[DataStreamMonitoring(model.monitor, valid_stream, prefix='valid', every_n_batches=1000), Printing(every_n_batches=1000), # Checkpoint('model.pkl', every_n_batches=100), Dump('model_data/' + model_name, every_n_batches=1000), LoadFromDump('model_data/' + model_name), FinishAfter(after_epoch=42), ] main_loop = MainLoop( model=Model([cost]), data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run() main_loop.profile.report() # Produce an output on the test data test_stream = setup_test_stream(req_vars_test) outfile = open("output/test-output-%s.csv" % model_name, "w") outcsv = csv.writer(outfile) if model.pred_vars == ['time']: outcsv.writerow(["TRIP_ID", "TRAVEL_TIME"]) for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']): time = out['outputs'] for i, trip in enumerate(out['trip_id']): outcsv.writerow([trip, int(time[i, 0])]) else: outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"]) for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']): dest = out['outputs'] for i, trip in enumerate(out['trip_id']): outcsv.writerow([trip, repr(dest[i, 0]), repr(dest[i, 1])]) outfile.close() if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()