aboutsummaryrefslogtreecommitdiff
path: root/model.py
blob: e104990d4ff7ea6917cb469121551e3ea6569b22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import logging
import os
from argparse import ArgumentParser

import numpy

import theano
from theano import printing
from theano import tensor
from theano.ifelse import ifelse

from blocks.filter import VariableFilter

from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity
from blocks.bricks.lookup import LookupTable

from blocks.initialization import IsotropicGaussian, Constant
from blocks.model import Model

from fuel.transformers import Batch
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme

from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.extensions import Printing
from blocks.extensions.saveload import Dump, LoadFromDump
from blocks.extensions.monitoring import DataStreamMonitoring

import data
import transformers
import hdist

n_dow = 7       # number of division for dayofweek/dayofmonth/hourofday
n_dom = 31
n_hour = 24

n_clients = 57105
n_stands = 63

n_begin_end_pts = 5     # how many points we consider at the beginning and end of the known trajectory
n_end_pts = 5

dim_embed = 50
dim_hidden = 200

learning_rate = 0.002
momentum = 0.9
batch_size = 32

def main():
    # The input and the targets
    x_firstk = tensor.matrix('first_k')
    n = x_firstk.shape[0]
    x_firstk = (x_firstk.reshape((n, n_begin_end_pts, 2)) - data.porto_center[None, None, :]) / data.data_std[None, None, :]
    x_firstk = x_firstk.reshape((n, 2 * n_begin_end_pts))

    x_lastk = tensor.matrix('last_k')
    n = x_lastk.shape[0]
    x_lastk = (x_lastk.reshape((n, n_begin_end_pts, 2)) - data.porto_center[None, None, :]) / data.data_std[None, None, :]
    x_lastk = x_lastk.reshape((n, 2 * n_begin_end_pts))

    x_client = tensor.lvector('origin_call')
    x_stand = tensor.lvector('origin_stand')
    y = tensor.matrix('destination')

    # Define the model
    client_embed_table = LookupTable(length=n_clients+1, dim=dim_embed, name='client_lookup')
    stand_embed_table = LookupTable(length=n_stands+1, dim=dim_embed, name='stand_lookup')
    hidden_layer = MLP(activations=[Rectifier()],
                       dims=[n_begin_end_pts * 2 * 2 + dim_embed + dim_embed, dim_hidden])
    output_layer = Linear(input_dim=dim_hidden, output_dim=2)

    # Create the Theano variables

    client_embed = client_embed_table.apply(x_client).flatten(ndim=2)
    stand_embed = stand_embed_table.apply(x_stand).flatten(ndim=2)
    inputs = tensor.concatenate([x_firstk, x_lastk,
                                 client_embed.zeros_like(), stand_embed.zeros_like()],
                                axis=1)
    # inputs = theano.printing.Print("inputs")(inputs)
    hidden = hidden_layer.apply(inputs)
    # hidden = theano.printing.Print("hidden")(hidden)
    outputs = output_layer.apply(hidden)

    # Normalize & Center
    outputs = data.data_std * outputs + data.porto_center

    # Calculate the cost
    cost = (outputs - y).norm(2, axis=1).mean()
    cost.name = 'cost'
    hcost = hdist.hdist(outputs, y).mean()
    hcost.name = 'hcost'

    # Initialization
    client_embed_table.weights_init = IsotropicGaussian(0.001)
    stand_embed_table.weights_init = IsotropicGaussian(0.001)
    hidden_layer.weights_init = IsotropicGaussian(0.01)
    hidden_layer.biases_init = Constant(0.001)
    output_layer.weights_init = IsotropicGaussian(0.01)
    output_layer.biases_init = Constant(0.001)

    client_embed_table.initialize()
    stand_embed_table.initialize()
    hidden_layer.initialize()
    output_layer.initialize()

    # Load the training and test data
    train = data.train_data
    train = DataStream(train)
    train = transformers.add_first_k(n_begin_end_pts, train)
    train = transformers.add_random_k(n_begin_end_pts, train)
    train = transformers.add_destination(train)
    train = transformers.Select(train, ('origin_stand', 'origin_call', 'first_k', 'last_k', 'destination'))
    train_stream = Batch(train, iteration_scheme=ConstantScheme(batch_size))

    valid = data.valid_data
    valid = DataStream(valid)
    valid = transformers.add_first_k(n_begin_end_pts, valid)
    valid = transformers.add_last_k(n_begin_end_pts, valid)
    valid = transformers.concat_destination_xy(valid)
    valid = transformers.Select(valid, ('origin_stand', 'origin_call', 'first_k', 'last_k', 'destination'))
    valid_stream = Batch(valid, iteration_scheme=ConstantScheme(batch_size))


    # Training
    cg = ComputationGraph(cost)
    params = VariableFilter(bricks=[Linear])(cg.parameters)
    algorithm = GradientDescent(
        cost=cost,
        # step_rule=AdaDelta(decay_rate=0.5),
        step_rule=Momentum(learning_rate=learning_rate, momentum=momentum),
        params=params)

    extensions=[DataStreamMonitoring([cost, hcost], valid_stream,
                                     prefix='valid',
                                     every_n_batches=1000),
                Printing(every_n_batches=1000),
                # Dump('taxi_model', every_n_batches=100),
                # LoadFromDump('taxi_model'),
                ]

    main_loop = MainLoop(
        model=Model([cost]),
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=extensions)
    main_loop.run()

if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()