import logging
import os
from argparse import ArgumentParser
import numpy
import theano
from theano import printing
from theano import tensor
from theano.ifelse import ifelse
from blocks.filter import VariableFilter
from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity
from blocks.bricks.lookup import LookupTable
from blocks.initialization import IsotropicGaussian, Constant
from blocks.model import Model
from fuel.transformers import Batch
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme
from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.extensions import Printing
from blocks.extensions.saveload import Dump, LoadFromDump
from blocks.extensions.monitoring import DataStreamMonitoring
import data
import transformers
import hdist
n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday
n_dom = 31
n_hour = 24
n_clients = 57105
n_stands = 63
n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory
n_end_pts = 5
dim_embed = 50
dim_hidden = 200
learning_rate = 0.002
momentum = 0.9
batch_size = 32
def main():
# The input and the targets
x_firstk = tensor.matrix('first_k')
n = x_firstk.shape[0]
x_firstk = (x_firstk.reshape((n, n_begin_end_pts, 2)) - data.porto_center[None, None, :]) / data.data_std[None, None, :]
x_firstk = x_firstk.reshape((n, 2 * n_begin_end_pts))
x_lastk = tensor.matrix('last_k')
n = x_lastk.shape[0]
x_lastk = (x_lastk.reshape((n, n_begin_end_pts, 2)) - data.porto_center[None, None, :]) / data.data_std[None, None, :]
x_lastk = x_lastk.reshape((n, 2 * n_begin_end_pts))
x_client = tensor.lvector('origin_call')
x_stand = tensor.lvector('origin_stand')
y = tensor.matrix('destination')
# Define the model
client_embed_table = LookupTable(length=n_clients+1, dim=dim_embed, name='client_lookup')
stand_embed_table = LookupTable(length=n_stands+1, dim=dim_embed, name='stand_lookup')
hidden_layer = MLP(activations=[Rectifier()],
dims=[n_begin_end_pts * 2 * 2 + dim_embed + dim_embed, dim_hidden])
output_layer = Linear(input_dim=dim_hidden, output_dim=2)
# Create the Theano variables
client_embed = client_embed_table.apply(x_client).flatten(ndim=2)
stand_embed = stand_embed_table.apply(x_stand).flatten(ndim=2)
inputs = tensor.concatenate([x_firstk, x_lastk,
client_embed.zeros_like(), stand_embed.zeros_like()],
axis=1)
# inputs = theano.printing.Print("inputs")(inputs)
hidden = hidden_layer.apply(inputs)
# hidden = theano.printing.Print("hidden")(hidden)
outputs = output_layer.apply(hidden)
# Normalize & Center
outputs = data.data_std * outputs + data.porto_center
# Calculate the cost
cost = (outputs - y).norm(2, axis=1).mean()
cost.name = 'cost'
hcost = hdist.hdist(outputs, y).mean()
hcost.name = 'hcost'
# Initialization
client_embed_table.weights_init = IsotropicGaussian(0.001)
stand_embed_table.weights_init = IsotropicGaussian(0.001)
hidden_layer.weights_init = IsotropicGaussian(0.01)
hidden_layer.biases_init = Constant(0.001)
output_layer.weights_init = IsotropicGaussian(0.01)
output_layer.biases_init = Constant(0.001)
client_embed_table.initialize()
stand_embed_table.initialize()
hidden_layer.initialize()
output_layer.initialize()
# Load the training and test data
train = data.train_data
train = DataStream(train)
train = transformers.add_first_k(n_begin_end_pts, train)
train = transformers.add_random_k(n_begin_end_pts, train)
train = transformers.add_destination(train)
train = transformers.Select(train, ('origin_stand', 'origin_call', 'first_k', 'last_k', 'destination'))
train_stream = Batch(train, iteration_scheme=ConstantScheme(batch_size))
valid = data.valid_data
valid = DataStream(valid)
valid = transformers.add_first_k(n_begin_end_pts, valid)
valid = transformers.add_last_k(n_begin_end_pts, valid)
valid = transformers.concat_destination_xy(valid)
valid = transformers.Select(valid, ('origin_stand', 'origin_call', 'first_k', 'last_k', 'destination'))
valid_stream = Batch(valid, iteration_scheme=ConstantScheme(batch_size))
# Training
cg = ComputationGraph(cost)
params = VariableFilter(bricks=[Linear])(cg.parameters)
algorithm = GradientDescent(
cost=cost,
# step_rule=AdaDelta(decay_rate=0.5),
step_rule=Momentum(learning_rate=learning_rate, momentum=momentum),
params=params)
extensions=[DataStreamMonitoring([cost, hcost], valid_stream,
prefix='valid',
every_n_batches=1000),
Printing(every_n_batches=1000),
# Dump('taxi_model', every_n_batches=100),
# LoadFromDump('taxi_model'),
]
main_loop = MainLoop(
model=Model([cost]),
data_stream=train_stream,
algorithm=algorithm,
extensions=extensions)
main_loop.run()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()