aboutsummaryrefslogtreecommitdiff
path: root/config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py
blob: 8c090c7f1a239709c31b48cd6713a11f892c37f3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cPickle

from blocks.initialization import IsotropicGaussian, Constant

import data

import model.dest_simple_mlp_tgtcls as model

n_begin_end_pts = 5     # how many points we consider at the beginning and end of the known trajectory
n_end_pts = 5

n_valid = 1000

with open("%s/arrival-clusters.pkl" % data.path) as f: tgtcls = cPickle.load(f)

dim_embeddings = [
    ('origin_call', data.origin_call_train_size, 10),
    ('origin_stand', data.stands_size, 10),
    ('week_of_year', 52, 10),
    ('day_of_week', 7, 10),
    ('qhour_of_day', 24 * 4, 10),
    ('day_type', 3, 10),
    ('taxi_id', 448, 10),
]

dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
dim_hidden = [500]
dim_output = tgtcls.shape[0]

embed_weights_init = IsotropicGaussian(0.01)
mlp_weights_init = IsotropicGaussian(0.1) 
mlp_biases_init = Constant(0.01)

learning_rate = 0.01
momentum = 0.9
batch_size = 200

valid_set = 'cuts/test_times_0'