import cPickle from blocks.initialization import IsotropicGaussian, Constant import data import model.dest_simple_mlp_tgtcls as model n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory n_end_pts = 5 n_valid = 1000 with open("%s/arrival-clusters.pkl" % data.path) as f: tgtcls = cPickle.load(f) dim_embeddings = [ ('origin_call', data.origin_call_train_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('day_type', 3, 10), ('taxi_id', 448, 10), ] dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) dim_hidden = [500] dim_output = tgtcls.shape[0] embed_weights_init = IsotropicGaussian(0.01) mlp_weights_init = IsotropicGaussian(0.1) mlp_biases_init = Constant(0.01) learning_rate = 0.01 momentum = 0.9 batch_size = 200 valid_set = 'cuts/test_times_0'