aboutsummaryrefslogblamecommitdiff
path: root/data/transformers.py
blob: e6806cc1cf9c2e866bc404789437ca693cdb0a95 (plain) (tree)
1
2
3
4
5
6
7
8
9


               

             

                                                                              
 
           
 
 

                                                 
                                                                                                  
                  
                        
                                                                       
             

                                                                        

 










                                                                            






















                                                               
        


                                                             
                                                                                                             











                                                                  

                                                                  









                                                                            

                                                                                                
 

                                                              
                                                                         
 
                                             
 

                                              
                                                     
                  


                                        



                                                                                                 
                                                                                                
                                                        

                                                                                                
                                                                           
                                            
 









                                                                                                                                           
                                                     
                                            


                                                               




























                                                                                            
 


                                                                                    
 










                                                                                                      
import datetime
import random

import numpy
import theano
from fuel.schemes import ConstantScheme
from fuel.transformers import Batch, Mapping, SortMapping, Transformer, Unpack

import data


def at_least_k(k, v, pad_at_begin, is_longitude):
    if len(v) == 0:
        v = numpy.array([data.porto_center[1 if is_longitude else 0]], dtype=theano.config.floatX)
    if len(v) < k:
        if pad_at_begin:
            v = numpy.concatenate((numpy.full((k - len(v),), v[0]), v))
        else:
            v = numpy.concatenate((v, numpy.full((k - len(v),), v[-1])))
    return v


class Select(Transformer):
    def __init__(self, data_stream, sources):
        super(Select, self).__init__(data_stream)
        self.ids = [data_stream.sources.index(source) for source in sources]
        self.sources=sources

    def get_data(self, request=None):
        if request is not None:
            raise ValueError
        data=next(self.child_epoch_iterator)
        return [data[id] for id in self.ids]

class TaxiExcludeTrips(Transformer):
    def __init__(self, stream, exclude_list):
        super(TaxiExcludeTrips, self).__init__(stream)
        self.id_trip_id = stream.sources.index('trip_id')
        self.exclude = {v: True for v in exclude_list}
    def get_data(self, request=None):
        if request is not None: raise ValueError
        while True:
            data = next(self.child_epoch_iterator)
            if not data[self.id_trip_id] in self.exclude: break
        return data

class TaxiExcludeEmptyTrips(Transformer):
    def __init__(self, stream):
        super(TaxiExcludeEmptyTrips, self).__init__(stream)
        self.latitude = stream.sources.index('latitude')
    def get_data(self, request=None):
        if request is not None: raise ValueError
        while True:
            data = next(self.child_epoch_iterator)
            if len(data[self.latitude])>0: break
        return data
        
class TaxiGenerateSplits(Transformer):
    def __init__(self, data_stream, max_splits=-1):
        super(TaxiGenerateSplits, self).__init__(data_stream)
        self.sources = data_stream.sources + ('destination_latitude', 'destination_longitude', 'travel_time')
        self.max_splits = max_splits
        self.data = None
        self.splits = []
        self.isplit = 0
        self.id_latitude = data_stream.sources.index('latitude')
        self.id_longitude = data_stream.sources.index('longitude')

    def get_data(self, request=None):
        if request is not None:
            raise ValueError
        while self.isplit >= len(self.splits):
            self.data = next(self.child_epoch_iterator)
            self.splits = range(len(self.data[self.id_longitude]))
            random.shuffle(self.splits)
            if self.max_splits != -1 and len(self.splits) > self.max_splits:
                self.splits = self.splits[:self.max_splits]
            self.isplit = 0
        
        i = self.isplit
        self.isplit += 1
        n = self.splits[i]+1

        r = list(self.data)

        r[self.id_latitude] = numpy.array(r[self.id_latitude][:n], dtype=theano.config.floatX)
        r[self.id_longitude] = numpy.array(r[self.id_longitude][:n], dtype=theano.config.floatX)

        dlat = numpy.float32(self.data[self.id_latitude][-1])
        dlon = numpy.float32(self.data[self.id_longitude][-1])
        ttime = numpy.int32(15 * (len(self.data[self.id_longitude]) - 1))

        return tuple(r + [dlat, dlon, ttime])


class _taxi_add_first_last_len_helper(object):
    def __init__(self, k, id_latitude, id_longitude):
        self.k = k
        self.id_latitude = id_latitude
        self.id_longitude = id_longitude
    def __call__(self, data):
        first_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], False, False)[:self.k],
                               dtype=theano.config.floatX),
                   numpy.array(at_least_k(self.k, data[self.id_longitude], False, True)[:self.k],
                               dtype=theano.config.floatX))
        last_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], True, False)[-self.k:],
                            dtype=theano.config.floatX),
                  numpy.array(at_least_k(self.k, data[self.id_longitude], True, True)[-self.k:],
                              dtype=theano.config.floatX))
        input_time = (numpy.int32(15 * (len(data[self.id_latitude]) - 1)),)
        return first_k + last_k + input_time

def taxi_add_first_last_len(stream, k):
    fun = _taxi_add_first_last_len_helper(k, stream.sources.index('latitude'), stream.sources.index('longitude'))
    return Mapping(stream, fun, add_sources=('first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude', 'input_time'))


class _taxi_add_datetime_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, data):
        ts = data[self.key]
        date = datetime.datetime.utcfromtimestamp(ts)
        yearweek = date.isocalendar()[1] - 1
        info = (numpy.int8(51 if yearweek == 52 else yearweek),
                numpy.int8(date.weekday()),
                numpy.int8(date.hour * 4 + date.minute / 15))
        return info

def taxi_add_datetime(stream):
    fun = _taxi_add_datetime_helper(stream.sources.index('timestamp'))
    return Mapping(stream, fun, add_sources=('week_of_year', 'day_of_week', 'qhour_of_day'))


class _balanced_batch_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, data):
        return len(data[self.key])

def balanced_batch(stream, key, batch_size, batch_sort_size):
    stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size * batch_sort_size))
    comparison = _balanced_batch_helper(stream.sources.index(key))
    stream = Mapping(stream, SortMapping(comparison))
    stream = Unpack(stream)
    return Batch(stream, iteration_scheme=ConstantScheme(batch_size))


class _taxi_remove_test_only_clients_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, x):
        x = list(x)
        if x[self.key] >= data.origin_call_train_size:
            x[self.key] = numpy.int32(0)
        return tuple(x)

def taxi_remove_test_only_clients(stream):
    fun = _taxi_remove_test_only_clients_helper(stream.sources.index('origin_call'))
    return Mapping(stream, fun)


class _add_destination_helper(object):
    def __init__(self, latitude, longitude):
        self.latitude = latitude
        self.longitude = longitude
    def __call__(self, data):
        return (data[self.latitude][-1], data[self.longitude][-1])

def add_destination(stream):
    fun = _add_destination_helper(stream.sources.index('latitude'), stream.sources.index('longitude'))
    return Mapping(stream, fun, add_sources=('destination_latitude', 'destination_longitude'))