aboutsummaryrefslogtreecommitdiff
path: root/transformers.py
diff options
context:
space:
mode:
authorÉtienne Simon <esimon@esimon.eu>2015-04-29 15:40:05 -0400
committerÉtienne Simon <esimon@esimon.eu>2015-04-29 15:40:51 -0400
commitf768d3e770216d4227ffd989cf98f1628fc476a3 (patch)
treeb5620a34eaebac5290b74882018bab16f4658e27 /transformers.py
parent61e0d47b6c6a570feebb43d474138020b13495aa (diff)
downloadtaxi-f768d3e770216d4227ffd989cf98f1628fc476a3.tar.gz
taxi-f768d3e770216d4227ffd989cf98f1628fc476a3.zip
Adapt model to hdf5 dataset. WIP
Diffstat (limited to 'transformers.py')
-rw-r--r--transformers.py69
1 files changed, 35 insertions, 34 deletions
diff --git a/transformers.py b/transformers.py
index c60d362..13852ac 100644
--- a/transformers.py
+++ b/transformers.py
@@ -3,15 +3,15 @@ import numpy
import theano
import random
-def at_least_k(k, pl, pad_at_begin):
- if len(pl) == 0:
- pl = [[ -8.61612, 41.1573]]
- if len(pl) < k:
+def at_least_k(k, v, pad_at_begin, is_longitude):
+ if len(v) == 0:
+ v = numpy.array([41.1573 if is_longitude else -8.61612], dtype=theano.config.floatX)
+ if len(v) < k:
if pad_at_begin:
- pl = [pl[0]] * (k - len(pl)) + pl
+ v = numpy.concatenate((numpy.full((k - len(v),), v[0]), v))
else:
- pl = pl + [pl[-1]] * (k - len(pl))
- return pl
+ v = numpy.concatenate((v, numpy.full((k - len(v),), v[-1])))
+ return v
class Select(Transformer):
@@ -27,38 +27,39 @@ class Select(Transformer):
return [data[id] for id in self.ids]
def add_first_k(k, stream):
- id_polyline=stream.sources.index('polyline')
- def first_k(x):
- pl = at_least_k(k, x[id_polyline], False)
- return (numpy.array(pl[:k], dtype=theano.config.floatX).flatten(),)
- stream = Mapping(stream, first_k, ('first_k',))
- return stream
+ id_latitude = stream.sources.index('latitude')
+ id_longitude = stream.sources.index('longitude')
+ return Mapping(stream,
+ lambda data:
+ (numpy.array(at_least_k(k, data[id_latitude], False, False)[:k], dtype=theano.config.floatX),
+ numpy.array(at_least_k(k, data[id_longitude], False, True)[:k], dtype=theano.config.floatX)),
+ ('first_k_latitude', 'first_k_longitude'))
def add_random_k(k, stream):
- id_polyline=stream.sources.index('polyline')
+ id_latitude = stream.sources.index('latitude')
+ id_longitude = stream.sources.index('longitude')
def random_k(x):
- pl = at_least_k(k, x[id_polyline], True)
- loc = random.randrange(len(pl)-k+1)
- return (numpy.array(pl[loc:loc+k], dtype=theano.config.floatX).flatten(),)
- stream = Mapping(stream, random_k, ('last_k',))
- return stream
+ lat = at_least_k(k, x[id_latitude], True, False)
+ lon = at_least_k(k, x[id_latitude], True, True)
+ loc = random.randrange(len(lat)-k+1)
+ return (numpy.array(lat[loc:loc+k], dtype=theano.config.floatX),
+ numpy.array(lon[loc:loc+k], dtype=theano.config.floatX)),
+ return Mapping(stream, random_k, ('last_k_latitude', 'last_k_longitude'))
def add_last_k(k, stream):
- id_polyline=stream.sources.index('polyline')
- def last_k(x):
- pl = at_least_k(k, x[id_polyline], True)
- return (numpy.array(pl[-k:], dtype=theano.config.floatX).flatten(),)
- stream = Mapping(stream, last_k, ('last_k',))
- return stream
+ id_latitude = stream.sources.index('latitude')
+ id_longitude = stream.sources.index('longitude')
+ return Mapping(stream,
+ lambda data:
+ (numpy.array(at_least_k(k, data[id_latitude], True, False)[-k:], dtype=theano.config.floatX),
+ numpy.array(at_least_k(k, data[id_longitude], True, True)[-k:], dtype=theano.config.floatX)),
+ ('last_k_latitude', 'last_k_longitude'))
def add_destination(stream):
- id_polyline=stream.sources.index('polyline')
+ id_latitude = stream.sources.index('latitude')
+ id_longitude = stream.sources.index('longitude')
return Mapping(stream,
- lambda x:
- (numpy.array(at_least_k(1, x[id_polyline], True)[-1], dtype=theano.config.floatX),),
- ('destination',))
-
-def concat_destination_xy(stream):
- id_dx=stream.sources.index('destination_x')
- id_dy=stream.sources.index('destination_y')
- return Mapping(stream, lambda x: (numpy.array([x[id_dx], x[id_dy]], dtype=theano.config.floatX),), ('destination',))
+ lambda data:
+ (numpy.array(at_least_k(1, data[id_latitude], True, False)[-1], dtype=theano.config.floatX),
+ numpy.array(at_least_k(1, data[id_longitude], True, True)[-1], dtype=theano.config.floatX)),
+ ('destination_latitude', 'destination_longitude'))