summaryrefslogtreecommitdiff
path: root/abstract/abs_interp_dynpart.ml
blob: 0f6bbbf4e9c779c936605583c7bf9bb72b2bd1a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
open Ast
open Ast_util
open Formula
open Typing
open Cmdline

open Util
open Abs_domain

open Varenv

module I (D0 : ENVIRONMENT_DOMAIN)
: sig

    val do_prog : cmdline_opt -> rooted_prog -> unit

end = struct

    (*
      Abstract analysis based on dynamic partitionning of the state space.
      Idea : use somme conditions appearing in the text of the program as
      disjunctions. We don't want to consider them all at once  in the first
      place because it would be way too costly ; instead we try to dynamically
      partition tye system. But we haven't got a very good heuristic for that,
      so it doesn't work very well.
    *)

    type location = {
        id              : int;
        depth           : int;

        mutable def     : D0.t;
        is_init         : bool;

        mutable f       : bool_expr;
        mutable cl      : conslist;

        (* For chaotic iteration fixpoint *)
        mutable in_c    : int;
        mutable v       : D0.t;

        mutable out_t   : int list;
        mutable in_t    : int list;

        mutable verif_g   : id list;
        mutable violate_g : id list;
    }

    type env = {
        rp            : rooted_prog;
        opt           : cmdline_opt;

        ve            : varenv;

        (* program expressions *)
        f             : bool_expr;
        guarantees    : (id * bool_expr * id) list;

        (* data *)
        loc           : (int, location) Hashtbl.t;
        counter       : int ref;
    }

    (* **************************
            ABSTRACT VALUES
       ************************** *)

    (*
      apply_cl : D0.t -> conslist -> D0.t
    *)
    let rec apply_cl v (ec, nc, r) =
        begin match r with
        | CLTrue ->
          D0.apply_ncl (D0.apply_ecl v ec) nc
        | CLFalse ->
          D0.bottom (D0.varenv v)
        | CLAnd(a, b) ->
          let v = apply_cl v (ec, nc, a) in
          let v = apply_cl v ([], nc, b) in
          v
        | CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
          let a = apply_cl v (ec@eca, nc@nca, ra) in 
          let b = apply_cl v (ec@ecb, nc@ncb, rb) in 
          D0.join a b
        end

    (*
      apply_cl_all_cases : D0.t -> conslist -> D0.t list
    *)
    let rec apply_cl_all_cases v (ec, nc, r) =
        match r with
        | CLTrue ->
          let v = D0.apply_ncl (D0.apply_ecl v ec) nc in
          if D0.is_bot v then [] else [v]
        | CLFalse ->
          []
        | CLAnd(a, b) ->
          let q1 = apply_cl_all_cases v (ec, nc, a) in
          List.flatten
            (List.map (fun c -> apply_cl_all_cases c ([], [], b)) q1)
        | CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
          let la = apply_cl_all_cases v (ec@eca, nc@nca, ra) in 
          let lb = apply_cl_all_cases v (ec@ecb, nc@ncb, rb) in 
          lb@(List.filter (fun a -> not (List.exists (fun b -> D0.eq a b) lb)) la)


    (* ***************************
              INTERPRET
       *************************** *)



    (*
      init_env : cmdline_opt -> rooted_prog -> env
    *)
    let init_env opt rp =
        let f = Transform.f_of_prog_incl_init rp false in

        let f = simplify_k (get_root_true f) f in
        Format.printf "Complete formula:@.%a@.@." Formula_printer.print_expr f;

        let facts = get_root_true f in
        let f, rp, repls = List.fold_left
          (fun (f, (rp : rooted_prog), repls) eq ->
            match eq with
            | BEnumCons(E_EQ, a, EIdent b)
                when a.[0] <> 'L' && b.[0] <> 'L' ->

              let a = try List.assoc a repls with Not_found -> a in
              let b = try List.assoc b repls with Not_found -> b in

              if a = b then
                f, rp, repls
              else begin
                let keep, repl =
                  if String.length a <= String.length b
                    then a, b
                    else b, a
                in
                Format.printf "Replacing %s with %s@." repl keep;
                let f = formula_replace_evars [repl, keep; "L"^repl, "L"^keep] f in
                let rp =
                  { rp with all_vars =
                      List.filter (fun (_, id, _) -> id <> repl) rp.all_vars } in
                let repls = [repl, keep; "L"^repl, "L"^keep]@
                  (List.map (fun (r, k) -> r, if k = repl then keep else k) repls) in
                f, rp, repls
              end
            | _ -> f, rp, repls)
          (f, rp, []) facts in

        let f = simplify_k (get_root_true f) f in

        Format.printf "Complete formula after simpl:@.%a@.@."
            Formula_printer.print_expr f;

        let guarantees = Transform.guarantees_of_prog rp in
        let guarantees = List.map
          (fun (id, f, v) -> id, formula_replace_evars repls f, v)
          guarantees in
        Format.printf "Guarantees:@.";
        List.iter (fun (id, f, _) ->
            Format.printf "  %s: %a@." id Formula_printer.print_expr f)
          guarantees;
        Format.printf "@.";
        
        let ve = mk_varenv rp opt.disjunct f (conslist_of_f f) in

        let env = {
          rp; opt; ve; f; guarantees;
          loc = Hashtbl.create 2; counter = ref 2; } in

        (* add initial disjunction : L/must_reset = tt, L/must_reset ≠ tt *)
        let id = let i = ref 0 in fun () -> (incr i; !i) in
        let add_loc is_init conds =
          let cf = simplify_k conds f in
          let cf = simplify_k (get_root_true cf) cf in
          let id = id() in
          Hashtbl.add env.loc id
            {
              id;
              depth = 0;
              def = apply_cl (D0.top env.ve) (conslist_of_f cf);
              is_init;

              f = cf;
              cl = conslist_of_f cf;

              in_c = 0;
              v = D0.bottom env.ve;

              out_t = [];
              in_t = [];
              verif_g = [];
              violate_g = [];
            };
        in

        add_loc true [BEnumCons(E_EQ, "L/must_reset", EItem bool_true)];

        let rec div_g conds = function
          | [] -> add_loc false conds
          | (_, _, v)::r ->
            add_loc false ((BEnumCons(E_NE, v, EItem bool_true))::conds);
            div_g ((BEnumCons(E_EQ, v, EItem bool_true))::conds) r
        in
          div_g [BEnumCons(E_NE, "L/must_reset", EItem bool_true)] env.guarantees;

        env


    (*
      ternary_conds : bool_expr -> bool_expr list
    *)
    let rec ternary_conds = function
        | BAnd(a, b) -> ternary_conds a @ ternary_conds b
        | BTernary(c, a, b) as x -> [c, x]
        | _ -> []

    (*
      pass_cycle : env -> edd_v -> edd_v
      unpass_cycle : env -> edd_v -> edd_v

      set_target_case : env -> edd_v -> bool_expr -> edd_v
      cycle : env -> edd_v -> conslist -> edd_v
    *)
    let pass_cycle env v =
        let assign_e, assign_n = List.fold_left
          (fun (ae, an) (a, b, t) -> match t with
            | TEnum _ -> (a, b)::ae, an
            | TInt | TReal -> ae, (a, NIdent b)::an)
          ([], []) env.cycle in

        let v = D0.eassign v assign_e in
        let v = D0.nassign v assign_n in

        D0.forgetvars v (List.map fst env.forget)

    let unpass_cycle env v =
        let assign_e, assign_n = List.fold_left
          (fun (ae, an) (a, b, t) -> match t with
            | TEnum _ -> (b, a)::ae, an
            | TInt | TReal -> ae, (b, NIdent a)::an)
          ([], []) env.ve.cycle in

        let v = D0.eassign v assign_e in
        let v = D0.nassign v assign_n in

        D0.forgetvars v (List.map fst env.ve.forget_inv)

    (*
      print_locs : env -> unit
    *)

    let print_locs_defs e =
        Hashtbl.iter
          (fun id loc ->
            Format.printf "q%d: @[<v 2>%a@]@." id D0.print loc.def;
            )
          e.loc

    let print_locs e =
        Hashtbl.iter
          (fun id loc ->
            Format.printf "@.";
            Format.printf "q%d (depth = %d):@.  D: @[<v 2>%a@]@." id loc.depth D0.print loc.def;
            (*Format.printf "  F: (%a)@." Formula_printer.print_expr loc.f;*)
            Format.printf "  V: %a@." D0.print loc.v;
            Format.printf " -> @[<hov>[%a]@]@."
              (print_list (fun fmt i -> Format.fprintf fmt "q%d" i) ", ") loc.out_t;
            )
          e.loc

    let dump_graphwiz_trans_graph e file =
        let o = open_out file in
        let fmt = Format.formatter_of_out_channel o in
        Format.fprintf fmt "digraph G{@.";

        Hashtbl.iter
          (fun id loc ->
            if loc.is_init then
              Format.fprintf fmt "  q%d [shape=doublecircle, label=\"q%d [%a]\"];@."
                id id (print_list Format.pp_print_string ", ") loc.violate_g
            else
              Format.fprintf fmt "  q%d [label=\"q%d [%a]\"];@."
                id id (print_list Format.pp_print_string ", ") loc.violate_g;
            let n1 = List.length loc.violate_g in
            List.iter
              (fun v ->
                let n2 = List.length (Hashtbl.find e.loc v).violate_g in
                let c, w =
                  if n2 > n1 then "#770000", 1
                  else "black", 2
                in
                Format.fprintf fmt "  q%d -> q%d [color = \"%s\", weight = %d];@."
                  id v c w)
              loc.out_t)
          e.loc;

        Format.fprintf fmt "}@.";
        close_out o
      

    (*
      chaotic_iter : env -> unit

      Fills the values of loc[*].v, and updates out_t and in_t
    *)
    let chaotic_iter e =
        let delta = ref [] in

        (* Fill up initial states *)
        Hashtbl.iter
          (fun q loc ->
            loc.out_t <- [];
            loc.in_t <- [];
            loc.in_c <- 0;
            if loc.is_init then begin
              loc.v <- apply_cl (D0.top e.ve) loc.cl;
              delta := q::!delta
            end else
              loc.v <- D0.bottom e.ve)
          e.loc;

        (*print_locs_defs e;*)

        (* Iterate *)
        let it_counter = ref 0 in
        while !delta <> [] do
          let s = List.hd !delta in
          let loc = Hashtbl.find e.loc s in

          incr it_counter;
          Format.printf "@.Iteration %d: q%d@." !it_counter s;

          let start = loc.v in
          let f i =
            (*Format.printf "I: %a@." D0.print i;*)
            let i' = D0.meet i (unpass_cycle e loc.def) in
            (*Format.printf "I': %a@." D0.print i';*)
            let j = D0.join start
              (apply_cl
                (D0.meet (pass_cycle e.ve i') loc.def)
                loc.cl) in
            (*Format.printf "J: %a@." D0.print j;*)
            j
          in

          let rec iter n i =
            let fi = f i in
            let j = 
                if n < e.opt.widen_delay then
                  D0.join i fi
                else
                  D0.widen i fi
            in
            if D0.eq i j
              then i
              else iter (n+1) j
          in
          let y = iter 0 start in
          let z = f y in
          let u = pass_cycle e.ve z in

          if e.opt.verbose_ci then
            Format.printf "Fixpoint: %a@. mem fp: %a@." D0.print z D0.print u;

          loc.v <- z;

          Hashtbl.iter
            (fun t loc2 ->
                let v = D0.meet u loc2.def in
                let w = apply_cl v loc2.cl in
                (*Format.printf "u: %a@.v: %a@. w: %a@." D0.print u D0.print v D0.print w;*)
                if not (D0.is_bot w) then begin
                  if e.opt.verbose_ci then
                    Format.printf "%d -> %d with:@.  %a@." s t D0.print w;
                  if not (List.mem s loc2.in_t)
                    then loc2.in_t <- s::loc2.in_t;
                  if not (List.mem t loc.out_t)
                    then loc.out_t <- t::loc.out_t;
                  if not (D0.subset w loc2.v) then begin
                    if loc2.in_c < e.opt.widen_delay then
                      loc2.v <- D0.join loc2.v w
                    else
                      loc2.v <- D0.widen loc2.v w;
                    loc2.in_c <- loc2.in_c + 1;
                    if not (List.mem t !delta)
                      then delta := t::!delta
                  end
                end)
            e.loc;

          delta := List.filter ((<>) s) !delta;
        done;

        (* remove useless locations *)
        let useless = ref [] in
        Hashtbl.iter
          (fun i loc ->
            if D0.is_bot loc.v then begin
              Format.printf "Useless location detected: q%d@." i;
              useless := i::!useless
            end)
          e.loc;
        List.iter (Hashtbl.remove e.loc) !useless;

        (* check which states verify/violate guarantees *)
        Hashtbl.iter
          (fun _ loc ->
            let verif, violate = List.partition
              (fun (_, f, _) ->
                D0.is_bot (apply_cl loc.v (conslist_of_f f)))
              e.guarantees
            in
            loc.verif_g <- List.map (fun (a, b, c) -> a) verif;
            loc.violate_g <- List.map (fun (a, b, c) -> a) violate)
          e.loc;

        print_locs e;

        ()



    let do_prog opt rp =
        let e = init_env opt rp in

        let rec iter n =
          Format.printf "@.--------------@.Refinement #%d@." n;

          chaotic_iter e;
          dump_graphwiz_trans_graph e (Format.sprintf "/tmp/part%03d.dot" n);

          let qc = ref None in

          if Hashtbl.length e.loc < e.opt.max_dp_width then begin
            (* put true or false conditions into location definition *)
            Hashtbl.iter
              (fun q (loc : location) ->
                let rec iter () =
                  try
                    let cond, _ = List.find
                      (fun (c, _) ->
                        D0.is_bot (apply_cl loc.v (conslist_of_f c))
                        || D0.is_bot (apply_cl loc.v (conslist_of_f (BNot c))))
                      (ternary_conds loc.f)
                    in
                    let tr =
                      if D0.is_bot (apply_cl loc.v (conslist_of_f cond))
                      then BNot cond
                      else cond
                    in
                    loc.def <- apply_cl loc.def (conslist_of_f tr);
                    loc.f <- simplify_k [tr] loc.f;
                    loc.f <- simplify_k (get_root_true loc.f) loc.f;
                    loc.cl <- conslist_of_f loc.f;
                    iter()
                  with Not_found -> ()
                in iter ())
              e.loc;

            (* find splitting condition *)
            let voi = List.map (fun (a, b, c) -> c) e.guarantees in

            Hashtbl.iter
              (fun q (loc:location) ->
                if loc.depth < e.opt.max_dp_depth then
                let cs = ternary_conds loc.f in
                List.iter
                  (fun (c, exprs) ->
                    let cases_t = apply_cl_all_cases (D0.top e.ve) (conslist_of_f c) in
                    let cases_f = apply_cl_all_cases (D0.top e.ve) (conslist_of_f (BNot c)) in
                    let cases = List.mapi (fun i c -> i, c) (cases_t @ cases_f) in
                    if
                      List.length 
                        (List.filter
                          (fun (_, case) -> not (D0.is_bot (D0.meet loc.v case)))
                          cases)
                        >= 2
                    then
                      (* calculate which transitions qi -> q stay or are destroyed (approximation) *)
                      let in_tc =
                        List.flatten @@ List.map
                          (fun qi ->
                            let loci = Hashtbl.find e.loc qi in
                            let v = apply_cl
                              (D0.meet (pass_cycle e.ve loci.v) loc.def)
                              loc.cl in
                            List.map
                              (fun (ci, case) -> qi, ci, not (D0.is_bot (D0.meet v case)))
                              cases)
                          loc.in_t
                      in
                      (* calculate which transitions q -> qo stay or are destroyed (approximation) *)
                      let out_tc =
                        List.flatten @@ List.map
                          (fun (ci, case) ->
                            let v = D0.meet loc.v case in
                            List.map
                              (fun qo ->
                                  let loco = Hashtbl.find e.loc qo in
                                  let w = apply_cl
                                    (D0.meet (pass_cycle e.ve v) loco.def)
                                    loco.cl
                                  in qo, ci, not (D0.is_bot w))
                              loc.out_t)
                          cases
                      in
                      (* calculate which cases have a good number of disappearing transitions *)
                      let fa =
                        let cs_sc =
                          List.map
                            (fun (ci, case) ->
                              let a = 
                                List.length
                                  (List.filter (fun (qi, c, a) -> not a && c = ci) in_tc)
                              in
                              let b =
                                List.length
                                  (List.filter (fun (qo, c, a) -> not a && c = ci) out_tc)
                              in
                              a + b + a * b)
                            cases
                        in
                        let a = List.fold_left max 0 cs_sc in
                        let b = if a = 0 then 0 else
                          List.length @@ List.filter
                            (fun qi ->
                              let qos = List.flatten @@ List.map
                                (fun (cid, c) ->
                                  if List.exists (fun (qi0, c0, a) -> a && qi0 = qi && c0 = cid) in_tc
                                  then
                                    List.map (fun (qo, _, _) -> qo) @@
                                      List.filter (fun (_, c1, a) -> a && cid = c1) out_tc
                                  else [])
                                cases
                              in
                              List.exists (fun qo -> not (List.mem qo qos)) loc.out_t)
                            loc.in_t
                        in
                        5 * a + 17 * b
                      in
                      if fa <> 0 then begin
                        (* calculate which states become inaccessible *)
                        let fb =
                          if List.for_all (fun (_, _, a) -> a) out_tc
                          then 0
                          else
                            let ff id =   (* transition function for new graph *)
                              if id >= 1000000 then
                                let case = id - 1000000 in
                                List.map (fun (qo, _, _) -> qo)
                                  (List.filter (fun (_, c, a) -> c = case && a) out_tc)
                              else
                                let out_t = (Hashtbl.find e.loc id).out_t in
                                if List.mem loc.id out_t then
                                  (List.map (fun (_, c, _) -> c + 1000000)
                                    (List.filter (fun (qi, _, a) -> qi = id && a) in_tc))
                                  @ (List.filter ((<>) id) out_t)
                                else out_t
                            in
                            let memo = Hashtbl.create 12 in
                            let rec do_x id =
                              if not (Hashtbl.mem memo id) then begin
                                Hashtbl.add memo id ();
                                List.iter do_x (ff id)
                              end
                            in
                            Hashtbl.iter (fun i loc2 -> if loc2.is_init && i <> loc.id then do_x i) e.loc;
                            if loc.is_init then List.iter (fun (ci, _) -> do_x (ci+1000000)) cases;
                            let disappear_count = (Hashtbl.length e.loc + List.length cases) - (Hashtbl.length memo) in
                            21 * disappear_count
                        in
                        (* calculate in/out count, weighted by changing guarantees *)
                        let fc =
                          1 * (2 * List.length loc.out_t + List.length loc.in_t)
                        in
                        (* calculate number of VOI (variables of interest) that are affected *)
                        let fd =
                          let vlist = refd_evars_of_f exprs in
                          3 * List.length
                          (List.filter (fun v -> List.mem v vlist) voi) in
                        (* give score to split *)
                        let score =
                          if fa = 0 then 0 else
                            fa + fb + fc + fd
                        in
                        Format.printf " %5d + %5d + %5d + %5d = %5d  (q%d)@." fa fb fc fd score loc.id;
                        if score > 0 &&
                          match !qc with
                          | None -> true
                          | Some (s, _, _, _, _) -> score >= s
                        then
                          qc := Some(score, q, c, cases_t, cases_f)
                      end)
                  cs
              )
              e.loc;

            match !qc with
            | None ->
              Format.printf "@.Found no more possible refinement.@.@."
            | Some (score, q, c, cases_t, cases_f) ->
              Format.printf "@.Refine q%d : @[<v 2>[ %a ]@]@." q
                (print_list D0.print ", ") (cases_t@cases_f);

              let loc = Hashtbl.find e.loc q in
              Hashtbl.remove e.loc loc.id;

              let handle_case cc case =
                  if not (D0.is_bot (D0.meet loc.v case)) then
                    let ff = simplify_k [cc] loc.f in
                    let ff = simplify_k (get_root_true ff) ff in
                  
                    let loc2 =
                      { loc with
                        id = (incr e.counter; !(e.counter));
                        depth = loc.depth + 1;
                        def = D0.meet loc.def case;
                        f = ff;
                        cl = conslist_of_f ff } in
                    Hashtbl.add e.loc loc2.id loc2
              in
                List.iter (handle_case c) cases_t;
                List.iter (handle_case (BNot c)) cases_f;
                          
              iter (n+1)
          end
        in iter 0;

        (* Check guarantees *)
        let check_guarantee (id, f, _) =
          Format.printf "@[<v 4>";
          let cl = Formula.conslist_of_f f in
          Format.printf "%s:@ %a ⇒ ⊥  @ "
            id Formula_printer.print_conslist cl;
          let violate = ref [] in
          Hashtbl.iter
            (fun lid loc ->
              if List.mem id loc.violate_g then
                violate := lid::!violate)
            e.loc;
          if !violate = [] then
            Format.printf "OK"
          else
            Format.printf "VIOLATED in @[<hov 2>[ %a ]@]"
              (print_list (fun fmt i -> Format.fprintf fmt "q%d" i) ", ") !violate;
          Format.printf "@]@ ";
        in
        if e.guarantees <> [] then begin
          Format.printf "Guarantee @[<v 0>";
          List.iter check_guarantee e.guarantees;
          Format.printf "@]@."
        end;

        (* Examine probes *)
        if List.exists (fun (p, _, _) -> p) e.ve.all_vars then begin
          let final =
            Hashtbl.fold
              (fun _ loc v -> D0.join v loc.v)
              e.loc (D0.bottom e.ve) in

          Format.printf "Probes: @[<v 0>";
          List.iter (fun (p, id, ty) ->
            if p then match ty with
            | TInt | TReal ->
              Format.printf "%a ∊ %a@ " Formula_printer.print_id id
                D0.print_itv (D0.nproject final id)
            | TEnum _ -> Format.printf "%a : enum variable@ "
                Formula_printer.print_id id)
            e.ve.all_vars;
          Format.printf "@]@."
        end



end