summaryrefslogtreecommitdiff
path: root/libs
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ansys.com>2014-06-11 16:41:43 +0200
committerAlex Auvolat <alex.auvolat@ansys.com>2014-06-11 16:41:43 +0200
commit36f98d819756ada119e696729e40d8e8e427b5f0 (patch)
treecacac900a6923e68911756c335f0dfaa61fcfba5 /libs
downloadscade-analyzer-36f98d819756ada119e696729e40d8e8e427b5f0.tar.gz
scade-analyzer-36f98d819756ada119e696729e40d8e8e427b5f0.zip
Initial commit: parser for tiny subset of SCADE language...
Diffstat (limited to 'libs')
-rw-r--r--libs/mapext.ml741
-rw-r--r--libs/mapext.mli473
-rw-r--r--libs/util.ml20
3 files changed, 1234 insertions, 0 deletions
diff --git a/libs/mapext.ml b/libs/mapext.ml
new file mode 100644
index 0000000..51f41ee
--- /dev/null
+++ b/libs/mapext.ml
@@ -0,0 +1,741 @@
+(*
+ Cours "Sémantique et Application à la Vérification de programmes"
+
+ Antoine Miné 2014
+ Ecole normale supérieure, Paris, France / CNRS / INRIA
+*)
+
+(*
+ This file is derived from the map.ml file from the OCaml distribution.
+ Changes are marked with the [AM] symbol.
+ Based on rev. 10468 2010-05-25 13:29:43Z
+
+ Original copyright follows.
+*)
+
+(***********************************************************************)
+(* *)
+(* Objective Caml *)
+(* *)
+(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
+(* *)
+(* Copyright 1996 Institut National de Recherche en Informatique et *)
+(* en Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU Library General Public License, with *)
+(* the special exception on linking described in file ../LICENSE. *)
+(* *)
+(***********************************************************************)
+
+module type OrderedType =
+ sig
+ type t
+ val compare: t -> t -> int
+ end
+
+module type S =
+ sig
+ type key
+ type +'a t
+ val empty: 'a t
+ val is_empty: 'a t -> bool
+ val mem: key -> 'a t -> bool
+ val add: key -> 'a -> 'a t -> 'a t
+ val singleton: key -> 'a -> 'a t
+ val remove: key -> 'a t -> 'a t
+ val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
+ val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
+ val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val iter: (key -> 'a -> unit) -> 'a t -> unit
+ val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
+ val for_all: (key -> 'a -> bool) -> 'a t -> bool
+ val exists: (key -> 'a -> bool) -> 'a t -> bool
+ val filter: (key -> 'a -> bool) -> 'a t -> 'a t
+ val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
+ val cardinal: 'a t -> int
+ val bindings: 'a t -> (key * 'a) list
+ val min_binding: 'a t -> (key * 'a)
+ val max_binding: 'a t -> (key * 'a)
+ val choose: 'a t -> (key * 'a)
+ val split: key -> 'a t -> 'a t * 'a option * 'a t
+ val find: key -> 'a t -> 'a
+ val map: ('a -> 'b) -> 'a t -> 'b t
+ val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
+
+
+ (* [AM] additions by Antoine Mine' *)
+
+ val of_list: (key * 'a) list -> 'a t
+
+ val map2: (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ val iter2: (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ val fold2: (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ val for_all2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ val exists2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+
+ val map2z: (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ val iter2z: (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ val fold2z: (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ val for_all2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val exists2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+
+ val map2o: (key -> 'a -> 'c) -> (key -> 'b -> 'c) -> (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ val iter2o: (key -> 'a -> unit) -> (key -> 'b -> unit) -> (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ val fold2o: (key -> 'a -> 'c -> 'c) -> (key -> 'b -> 'c -> 'c) -> (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ val for_all2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ val exists2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+
+ val map2zo: (key -> 'a -> 'a) -> (key -> 'a -> 'a) -> (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ val iter2zo: (key -> 'a -> unit) -> (key -> 'a -> unit) -> (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ val fold2zo: (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ val for_all2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val exists2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+
+ val map_slice: (key -> 'a -> 'a) -> 'a t -> key -> key -> 'a t
+ val iter_slice: (key -> 'a -> unit) -> 'a t -> key -> key -> unit
+ val fold_slice: (key -> 'a -> 'b -> 'b) -> 'a t -> key -> key -> 'b -> 'b
+ val for_all_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ val exists_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+
+ val key_equal: 'a t -> 'a t -> bool
+ val key_subset: 'a t -> 'a t -> bool
+
+ val find_greater: key -> 'a t -> key * 'a
+ val find_less: key -> 'a t -> key * 'a
+ val find_greater_equal: key -> 'a t -> key * 'a
+ val find_less_equal: key -> 'a t -> key * 'a
+
+ end
+
+module Make(Ord: OrderedType) = (struct
+
+ type key = Ord.t
+
+ type 'a t =
+ Empty
+ | Node of 'a t * key * 'a * 'a t * int
+
+ let height = function
+ Empty -> 0
+ | Node(_,_,_,_,h) -> h
+
+ let create l x d r =
+ let hl = height l and hr = height r in
+ Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ let singleton x d = Node(Empty, x, d, Empty, 1)
+
+ let bal l x d r =
+ let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
+ let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
+ if hl > hr + 2 then begin
+ match l with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(ll, lv, ld, lr, _) ->
+ if height ll >= height lr then
+ create ll lv ld (create lr x d r)
+ else begin
+ match lr with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(lrl, lrv, lrd, lrr, _)->
+ create (create ll lv ld lrl) lrv lrd (create lrr x d r)
+ end
+ end else if hr > hl + 2 then begin
+ match r with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(rl, rv, rd, rr, _) ->
+ if height rr >= height rl then
+ create (create l x d rl) rv rd rr
+ else begin
+ match rl with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(rll, rlv, rld, rlr, _) ->
+ create (create l x d rll) rlv rld (create rlr rv rd rr)
+ end
+ end else
+ Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ let empty = Empty
+
+ let is_empty = function Empty -> true | _ -> false
+
+ let rec add x data = function
+ Empty ->
+ Node(Empty, x, data, Empty, 1)
+ | Node(l, v, d, r, h) ->
+ let c = Ord.compare x v in
+ if c = 0 then
+ Node(l, x, data, r, h)
+ else if c < 0 then
+ bal (add x data l) v d r
+ else
+ bal l v d (add x data r)
+
+ let rec find x = function
+ Empty ->
+ raise Not_found
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ if c = 0 then d
+ else find x (if c < 0 then l else r)
+
+ let rec mem x = function
+ Empty ->
+ false
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ c = 0 || mem x (if c < 0 then l else r)
+
+ let rec min_binding = function
+ Empty -> raise Not_found
+ | Node(Empty, x, d, r, _) -> (x, d)
+ | Node(l, x, d, r, _) -> min_binding l
+
+ let rec max_binding = function
+ Empty -> raise Not_found
+ | Node(l, x, d, Empty, _) -> (x, d)
+ | Node(l, x, d, r, _) -> max_binding r
+
+ let rec remove_min_binding = function
+ Empty -> invalid_arg "Mapext.remove_min_elt"
+ | Node(Empty, x, d, r, _) -> r
+ | Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
+
+ let merge t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (_, _) ->
+ let (x, d) = min_binding t2 in
+ bal t1 x d (remove_min_binding t2)
+
+ let rec remove x = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let c = Ord.compare x v in
+ if c = 0 then
+ merge l r
+ else if c < 0 then
+ bal (remove x l) v d r
+ else
+ bal l v d (remove x r)
+
+ let rec iter f = function
+ Empty -> ()
+ | Node(l, v, d, r, _) ->
+ iter f l; f v d; iter f r
+
+ let rec map f = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let l' = map f l in
+ let d' = f d in
+ let r' = map f r in
+ Node(l', v, d', r', h)
+
+ let rec mapi f = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let l' = mapi f l in
+ let d' = f v d in
+ let r' = mapi f r in
+ Node(l', v, d', r', h)
+
+ let rec fold f m accu =
+ match m with
+ Empty -> accu
+ | Node(l, v, d, r, _) ->
+ fold f r (f v d (fold f l accu))
+
+ (* [AM] changed to call p in the key order *)
+ let rec for_all p = function
+ Empty -> true
+ | Node(l, v, d, r, _) -> for_all p l && p v d && for_all p r
+
+ (* [AM] changed to call p in the key order *)
+ let rec exists p = function
+ Empty -> false
+ | Node(l, v, d, r, _) -> exists p l || p v d || exists p r
+
+ (* [AM] changed to call p in the key order *)
+ let filter p s =
+ fold (fun k d a -> if p k d then add k d a else a) s Empty
+
+ let partition p s =
+ let rec part (t, f as accu) = function
+ | Empty -> accu
+ | Node(l, v, d, r, _) ->
+ part (part (if p v d then (add v d t, f) else (t, add v d f)) l) r in
+ part (Empty, Empty) s
+
+ (* Same as create and bal, but no assumptions are made on the
+ relative heights of l and r. *)
+
+ let rec join l v d r =
+ match (l, r) with
+ (Empty, _) -> add v d r
+ | (_, Empty) -> add v d l
+ | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
+ if lh > rh + 2 then bal ll lv ld (join lr v d r) else
+ if rh > lh + 2 then bal (join l v d rl) rv rd rr else
+ create l v d r
+
+ (* Merge two trees l and r into one.
+ All elements of l must precede the elements of r.
+ No assumption on the heights of l and r. *)
+
+ let concat t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (_, _) ->
+ let (x, d) = min_binding t2 in
+ join t1 x d (remove_min_binding t2)
+
+ let concat_or_join t1 v d t2 =
+ match d with
+ | Some d -> join t1 v d t2
+ | None -> concat t1 t2
+
+ let rec split x = function
+ Empty ->
+ (Empty, None, Empty)
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ if c = 0 then (l, Some d, r)
+ else if c < 0 then
+ let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
+ else
+ let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
+
+ let rec merge f s1 s2 =
+ match (s1, s2) with
+ (Empty, Empty) -> Empty
+ | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
+ let (l2, d2, r2) = split v1 s2 in
+ concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
+ | (_, Node (l2, v2, d2, r2, h2)) ->
+ let (l1, d1, r1) = split v2 s1 in
+ concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
+ | _ ->
+ assert false
+
+ type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
+
+ let rec cons_enum m e =
+ match m with
+ Empty -> e
+ | Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
+
+ let compare cmp m1 m2 =
+ let rec compare_aux e1 e2 =
+ match (e1, e2) with
+ (End, End) -> 0
+ | (End, _) -> -1
+ | (_, End) -> 1
+ | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
+ let c = Ord.compare v1 v2 in
+ if c <> 0 then c else
+ let c = cmp d1 d2 in
+ if c <> 0 then c else
+ compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
+ in compare_aux (cons_enum m1 End) (cons_enum m2 End)
+
+ let equal cmp m1 m2 =
+ let rec equal_aux e1 e2 =
+ match (e1, e2) with
+ (End, End) -> true
+ | (End, _) -> false
+ | (_, End) -> false
+ | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
+ Ord.compare v1 v2 = 0 && cmp d1 d2 &&
+ equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
+ in equal_aux (cons_enum m1 End) (cons_enum m2 End)
+
+ let rec cardinal = function
+ Empty -> 0
+ | Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
+
+ let rec bindings_aux accu = function
+ Empty -> accu
+ | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
+
+ let bindings s =
+ bindings_aux [] s
+
+ let choose = min_binding
+
+
+
+ (* [AM] additions by Antoine Mine' *)
+ (* ******************************* *)
+
+
+ let of_list l =
+ List.fold_left (fun acc (k,x) -> add k x acc) empty l
+
+
+ (* similar to split, but returns unbalanced trees *)
+ let rec cut k = function
+ Empty -> Empty,None,Empty
+ | Node (l1,k1,d1,r1,h1) ->
+ let c = Ord.compare k k1 in
+ if c < 0 then
+ let l2,d2,r2 = cut k l1 in (l2,d2,Node (r2,k1,d1,r1,h1))
+ else if c > 0 then
+ let l2,d2,r2 = cut k r1 in (Node (l1,k1,d1,l2,h1),d2,r2)
+ else (l1,Some d1,r1)
+
+
+ (* binary operations that fail on maps with different keys *)
+
+ (* functions are called in increasing key order *)
+
+ let rec map2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ Node (map2 f l1 l2, k, f k d1 d2, map2 f r1 r2, h1)
+ | _, None, _ -> invalid_arg "Mapext.map2"
+
+ let rec iter2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 -> iter2 f l1 l2; f k d1 d2; iter2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.iter2"
+
+ let rec fold2 f m1 m2 acc =
+ match m1 with
+ | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ fold2 f r1 r2 (f k d1 d2 (fold2 f l1 l2 acc))
+ | _, None, _ -> invalid_arg "Mapext.fold2"
+
+ let rec for_all2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ for_all2 f l1 l2 && f k d1 d2 && for_all2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.for_all2"
+
+ let rec exists2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ exists2 f l1 l2 || f k d1 d2 || exists2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.exists2"
+
+
+ (* as above, but ignore physically equal subtrees
+ - for map, assumes: f k d d = d
+ - for iter, assumes: f k d d has no effect
+ - for fold, assumes: k f d d acc = acc
+ - for for_all, assumes: f k d d = true
+ - for exists, assumes: f k d d = false
+ *)
+
+ let rec map2z f m1 m2 =
+ if m1 == m2 then m1 else
+ match m1 with
+ | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ let d = if d1 == d2 then d1 else f k d1 d2 in
+ Node (map2z f l1 l2, k, d, map2z f r1 r2, h1)
+ | _, None, _ -> invalid_arg "Mapext.map2z"
+
+ let rec iter2z f m1 m2 =
+ if m1 == m2 then () else
+ match m1 with
+ | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ iter2z f l1 l2; (if d1 != d2 then f k d1 d2); iter2z f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.iter2z"
+
+ let rec fold2z f m1 m2 acc =
+ if m1 == m2 then acc else
+ match m1 with
+ | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ let acc = fold2z f l1 l2 acc in
+ let acc = if d1 == d2 then acc else f k d1 d2 acc in
+ fold2z f r1 r2 acc
+ | _, None, _ -> invalid_arg "Mapext.fold2z"
+
+ let rec for_all2z f m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ (for_all2z f l1 l2) &&
+ (d1 == d2 || f k d1 d2) &&
+ (for_all2z f r1 r2)
+ | _, None, _ -> invalid_arg "Mapext.for_all2z"
+ )
+
+ let rec exists2z f m1 m2 =
+ (m1 != m2) &&
+ (match m1 with
+ | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ (exists2z f l1 l2) ||
+ (d1 != d2 && f k d1 d2) ||
+ (exists2z f r1 r2)
+ | _, None, _ -> invalid_arg "Mapext.exists2z"
+ )
+
+
+ (* as above, but allow maps with different keys *)
+
+ let rec map2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> mapi f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let l = map2o f1 f2 f l1 l2 in
+ let d = match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2 in
+ let r = map2o f1 f2 f r1 r2 in
+ join l k d r
+
+ let rec iter2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> iter f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ iter2o f1 f2 f l1 l2;
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2);
+ iter2o f1 f2 f r1 r2
+
+ let rec fold2o f1 f2 f m1 m2 acc =
+ match m1 with
+ | Empty -> fold f2 m2 acc
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let acc = fold2o f1 f2 f l1 l2 acc in
+ let acc = match d2 with
+ | None -> f1 k d1 acc | Some d2 -> f k d1 d2 acc
+ in
+ fold2o f1 f2 f r1 r2 acc
+
+ let rec for_all2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> for_all f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (for_all2o f1 f2 f l1 l2) &&
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) &&
+ (for_all2o f1 f2 f r1 r2)
+
+ let rec exists2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> exists f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (exists2o f1 f2 f l1 l2) ||
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) ||
+ (exists2o f1 f2 f r1 r2)
+
+
+ (* all together now *)
+
+ let rec map2zo f1 f2 f m1 m2 =
+ if m1 == m2 then m1 else
+ match m1 with
+ | Empty -> mapi f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let l = map2zo f1 f2 f l1 l2 in
+ let d = match d2 with
+ | None -> f1 k d1
+ | Some d2 -> if d1 == d2 then d1 else f k d1 d2
+ in
+ let r = map2zo f1 f2 f r1 r2 in
+ join l k d r
+
+ let rec iter2zo f1 f2 f m1 m2 =
+ if m1 == m2 then () else
+ match m1 with
+ | Empty -> iter f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ iter2zo f1 f2 f l1 l2;
+ (match d2 with
+ | None -> f1 k d1
+ | Some d2 -> if d1 != d2 then f k d1 d2);
+ iter2zo f1 f2 f r1 r2
+
+ let rec fold2zo f1 f2 f m1 m2 acc =
+ if m1 == m2 then acc else
+ match m1 with
+ | Empty -> fold f2 m2 acc
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let acc = fold2zo f1 f2 f l1 l2 acc in
+ let acc = match d2 with
+ | None -> f1 k d1 acc
+ | Some d2 -> if d1 == d2 then acc else f k d1 d2 acc
+ in
+ fold2zo f1 f2 f r1 r2 acc
+
+ let rec for_all2zo f1 f2 f m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> for_all f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (for_all2zo f1 f2 f l1 l2) &&
+ (match d2 with None -> f1 k d1 | Some d2 -> d1 == d2 || f k d1 d2) &&
+ (for_all2zo f1 f2 f r1 r2)
+ )
+
+ let rec exists2zo f1 f2 f m1 m2 =
+ (m1 != m2) &&
+ (match m1 with
+ | Empty -> exists f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (exists2zo f1 f2 f l1 l2) ||
+ (match d2 with None -> f1 k d1 | Some d2 -> d1 != d2 && f k d1 d2) ||
+ (exists2zo f1 f2 f r1 r2)
+ )
+
+
+ (* iterators limited to keys between two bounds *)
+
+ let rec map_slice f m lo hi =
+ match m with
+ | Empty -> Empty
+ | Node (l,k,d,r,h) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ let l = if c1 > 0 then map_slice f l lo k else l in
+ let d = if c1 >= 0 && c2 <= 0 then f k d else d in
+ let r = if c2 < 0 then map_slice f r k hi else r in
+ Node (l,k,d,r,h)
+
+ let rec iter_slice f m lo hi =
+ match m with
+ | Empty -> ()
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ if c1 > 0 then iter_slice f l lo k;
+ if c1 >= 0 && c2 <= 0 then f k d;
+ if c2 < 0 then iter_slice f r k hi
+
+ let rec fold_slice f m lo hi acc =
+ match m with
+ | Empty -> acc
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ let acc = if c1 > 0 then fold_slice f l lo k acc else acc in
+ let acc = if c1 >= 0 && c2 <= 0 then f k d acc else acc in
+ if c2 < 0 then fold_slice f r k hi acc else acc
+
+ let rec for_all_slice f m lo hi =
+ match m with
+ | Empty -> true
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ (c1 <= 0 || for_all_slice f l lo k) &&
+ (c1 < 0 || c2 > 0 || f k d) &&
+ (c2 >= 0 || for_all_slice f r k hi)
+
+ let rec exists_slice f m lo hi =
+ match m with
+ | Empty -> false
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ (c1 > 0 && exists_slice f l lo k) ||
+ (c1 >= 0 && c2 <= 0 && f k d) ||
+ (c2 < 0 && exists_slice f r k hi)
+
+
+ (* key set comparison *)
+
+ let rec key_equal m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> m2 = Empty
+ | Node (l1, k, _, r1, _) ->
+ match cut k m2 with
+ | _, None, _ -> false
+ | l2, Some _, r2 -> key_equal l1 l2 && key_equal r1 r2
+ )
+
+ let rec key_subset m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> true
+ | Node (l1, k, _, r1, _) ->
+ match cut k m2 with
+ | _, None, _ -> false
+ | l2, Some _, r2 -> key_subset l1 l2 && key_subset r1 r2
+ )
+
+
+ (* nagivation *)
+
+ let find_greater_equal k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c = 0 then kk, d else
+ if c > 0 then aux r found else
+ aux l (Some (kk, d))
+ in
+ aux m None
+
+ let find_greater k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c >= 0 then aux r found else
+ aux l (Some (kk, d))
+ in
+ aux m None
+
+ let find_less_equal k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c = 0 then kk, d else
+ if c < 0 then aux l found else
+ aux r (Some (kk, d))
+ in
+ aux m None
+
+ let find_less k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c <= 0 then aux l found else
+ aux r (Some (kk, d))
+ in
+ aux m None
+
+
+end: S with type key = Ord.t)
diff --git a/libs/mapext.mli b/libs/mapext.mli
new file mode 100644
index 0000000..abee2c0
--- /dev/null
+++ b/libs/mapext.mli
@@ -0,0 +1,473 @@
+(*
+ Cours "Sémantique et Application à la Vérification de programmes"
+
+ Antoine Miné 2014
+ Ecole normale supérieure, Paris, France / CNRS / INRIA
+*)
+
+(*
+ This file is derived from the mapi.ml file from the OCaml distribution.
+ Changes are marked with the [AM] symbol.
+ Based on rev. 10632 2010-07-24 14:16:58Z.
+
+ Original copyright follows.
+*)
+
+
+(***********************************************************************)
+(* *)
+(* Objective Caml *)
+(* *)
+(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
+(* *)
+(* Copyright 1996 Institut National de Recherche en Informatique et *)
+(* en Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU Library General Public License, with *)
+(* the special exception on linking described in file ../LICENSE. *)
+(* *)
+(***********************************************************************)
+
+(* $Id: mapext.mli,v 1.1 2014-02-24 16:25:06 mine Exp $ *)
+
+(** Association tables over ordered types.
+
+ This module implements applicative association tables, also known as
+ finite maps or dictionaries, given a total ordering function
+ over the keys.
+ All operations over maps are purely applicative (no side-effects).
+ The implementation uses balanced binary trees, and therefore searching
+ and insertion take time logarithmic in the size of the map.
+*)
+
+module type OrderedType =
+ sig
+ type t
+ (** The type of the map keys. *)
+ val compare : t -> t -> int
+ (** A total ordering function over the keys.
+ This is a two-argument function [f] such that
+ [f e1 e2] is zero if the keys [e1] and [e2] are equal,
+ [f e1 e2] is strictly negative if [e1] is smaller than [e2],
+ and [f e1 e2] is strictly positive if [e1] is greater than [e2].
+ Example: a suitable ordering function is the generic structural
+ comparison function {!Pervasives.compare}. *)
+ end
+(** Input signature of the functor {!Map.Make}. *)
+
+module type S =
+ sig
+ type key
+ (** The type of the map keys. *)
+
+ type (+'a) t
+ (** The type of maps from type [key] to type ['a]. *)
+
+ val empty: 'a t
+ (** The empty map. *)
+
+ val is_empty: 'a t -> bool
+ (** Test whether a map is empty or not. *)
+
+ val mem: key -> 'a t -> bool
+ (** [mem x m] returns [true] if [m] contains a binding for [x],
+ and [false] otherwise. *)
+
+ val add: key -> 'a -> 'a t -> 'a t
+ (** [add x y m] returns a map containing the same bindings as
+ [m], plus a binding of [x] to [y]. If [x] was already bound
+ in [m], its previous binding disappears. *)
+
+ val singleton: key -> 'a -> 'a t
+ (** [singleton x y] returns the one-element map that contains a binding [y]
+ for [x].
+ @since 3.12.0
+ *)
+
+ val remove: key -> 'a t -> 'a t
+ (** [remove x m] returns a map containing the same bindings as
+ [m], except for [x] which is unbound in the returned map. *)
+
+ val merge:
+ (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
+ (** [merge f m1 m2] computes a map whose keys is a subset of keys of [m1]
+ and of [m2]. The presence of each such binding, and the corresponding
+ value, is determined with the function [f].
+ @since 3.12.0
+ *)
+
+ val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
+ (** Total ordering between maps. The first argument is a total ordering
+ used to compare data associated with equal keys in the two maps. *)
+
+ val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
+ equal, that is, contain equal keys and associate them with
+ equal data. [cmp] is the equality predicate used to compare
+ the data associated with the keys. *)
+
+ val iter: (key -> 'a -> unit) -> 'a t -> unit
+ (** [iter f m] applies [f] to all bindings in map [m].
+ [f] receives the key as first argument, and the associated value
+ as second argument. The bindings are passed to [f] in increasing
+ order with respect to the ordering over the type of the keys. *)
+
+ val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
+ (** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
+ where [k1 ... kN] are the keys of all bindings in [m]
+ (in increasing order), and [d1 ... dN] are the associated data. *)
+
+ val for_all: (key -> 'a -> bool) -> 'a t -> bool
+ (* [AM] now guarantees the evaluation order *)
+ (** [for_all p m] checks if all the bindings of the map
+ satisfy the predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val exists: (key -> 'a -> bool) -> 'a t -> bool
+ (* [AM] now guarantees the evaluation order *)
+ (** [exists p m] checks if at least one binding of the map
+ satisfy the predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val filter: (key -> 'a -> bool) -> 'a t -> 'a t
+ (* [AM] now guarantees the evaluation order *)
+ (** [filter p m] returns the map with all the bindings in [m]
+ that satisfy predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
+ (** [partition p m] returns a pair of maps [(m1, m2)], where
+ [m1] contains all the bindings of [s] that satisfy the
+ predicate [p], and [m2] is the map with all the bindings of
+ [s] that do not satisfy [p].
+ @since 3.12.0
+ *)
+
+ val cardinal: 'a t -> int
+ (** Return the number of bindings of a map.
+ @since 3.12.0
+ *)
+
+ val bindings: 'a t -> (key * 'a) list
+ (** Return the list of all bindings of the given map.
+ The returned list is sorted in increasing order with respect
+ to the ordering [Ord.compare], where [Ord] is the argument
+ given to {!Map.Make}.
+ @since 3.12.0
+ *)
+
+ val min_binding: 'a t -> (key * 'a)
+ (** Return the smallest binding of the given map
+ (with respect to the [Ord.compare] ordering), or raise
+ [Not_found] if the map is empty.
+ @since 3.12.0
+ *)
+
+ val max_binding: 'a t -> (key * 'a)
+ (** Same as {!Map.S.min_binding}, but returns the largest binding
+ of the given map.
+ @since 3.12.0
+ *)
+
+ val choose: 'a t -> (key * 'a)
+ (** Return one binding of the given map, or raise [Not_found] if
+ the map is empty. Which binding is chosen is unspecified,
+ but equal bindings will be chosen for equal maps.
+ @since 3.12.0
+ *)
+
+ val split: key -> 'a t -> 'a t * 'a option * 'a t
+ (** [split x m] returns a triple [(l, data, r)], where
+ [l] is the map with all the bindings of [m] whose key
+ is strictly less than [x];
+ [r] is the map with all the bindings of [m] whose key
+ is strictly greater than [x];
+ [data] is [None] if [m] contains no binding for [x],
+ or [Some v] if [m] binds [v] to [x].
+ @since 3.12.0
+ *)
+
+ val find: key -> 'a t -> 'a
+ (** [find x m] returns the current binding of [x] in [m],
+ or raises [Not_found] if no such binding exists. *)
+
+ val map: ('a -> 'b) -> 'a t -> 'b t
+ (** [map f m] returns a map with same domain as [m], where the
+ associated value [a] of all bindings of [m] has been
+ replaced by the result of the application of [f] to [a].
+ The bindings are passed to [f] in increasing order
+ with respect to the ordering over the type of the keys. *)
+
+ val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
+ (** Same as {!Map.S.map}, but the function receives as arguments both the
+ key and the associated value for each binding of the map. *)
+
+
+ (* [AM] additions *)
+
+ (** {2 Additional functions} *)
+
+ val of_list: (key * 'a) list -> 'a t
+ (** [of_list l] converts an association list to a map. *)
+
+ val map2: (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ (** [map2 f m1 m2] is similar to [map] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key to construct a new map with the same key set.
+ [m1] and [m2] must have the same key sets.
+ The binging are passed to [f] in increasing order of key. *)
+
+ val iter2: (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ (** [iter2 f m1 m2] is similar to [map] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The binging are passed to [f] in increasing order of key. *)
+
+ val fold2: (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ (** [fold2 f m1 m2 x] is similar to [fold] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val for_all2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [for_all2 f m1 m2] is similar to [for_all] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val exists2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [exists2 f m1 m2] is similar to [exists] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+
+
+
+ val map2z: (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ (** [map2z f m1 m2] is similar to [map2 f m1 m2], but physically
+ equal subtrees are put unchanged into the result instead of
+ being traversed.
+ This is more efficient than [map2], and equivalent if [f] is
+ side-effect free and idem-potent ([f k a a = a]).
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val iter2z: (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ (** [iter2z f m1 m2] is similar to [iter2 f m1 m2], but physically
+ equal subtrees are ignored.
+ This is more efficient than [iter2], and equivalent if
+ [f k a a] has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val fold2z: (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ (** [fold2z f m1 m2 a] is similar to [fold2 f m1 m2 a], but physically
+ equal subtrees are ignored.
+ This is more efficient than [fold2], and equivalent if
+ [f k a a x = x] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val for_all2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [for_all2z f m1 m2] is similar to [for_all2 f m1 m2], but returns
+ [true] for physically equal subtrees without traversing them.
+ This is more efficient than [for_all2z], and equivalent if
+ [f k a a = true] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val exists2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [exists2z f m1 m2] is similar to [exists2 f m1 m2], but returns
+ [false] for physically equal subtrees without traversing them.
+ This is more efficient than [exists2z], and equivalent if
+ [f k a a = false] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+
+
+
+ val map2o: (key -> 'a -> 'c) -> (key -> 'b -> 'c) -> (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ (** [map2o f1 f2 f m1 m2] is similar to [map2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ To get a new binding, [f1] is used for keys appearing only
+ in [m1], [f2] for keys appearing only in [m2], and [f] for
+ keys appearing in both maps.
+ The returned map has bindings for all keys appearing in either
+ [m1] or [m2].
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val iter2o: (key -> 'a -> unit) -> (key -> 'b -> unit) -> (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ (** [iter2o f1 f2 f m1 m2] is similar to [iter2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val fold2o: (key -> 'a -> 'c -> 'c) -> (key -> 'b -> 'c -> 'c) -> (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ (** [fold2o f1 f2 f m1 m2 a] is similar to [fold2 f m1 m2 a], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val for_all2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [for_all2o f1 f2 f m1 m2] is similar to [for_all2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val exists2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [fexists2o f1 f2 f m1 m2] is similar to [fexists2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+
+
+ val map2zo: (key -> 'a -> 'a) -> (key -> 'a -> 'a) -> (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ (** [map2zo f1 f2 f m1 m2] is similar to [map2o f1 f2 f m1 m2] but,
+ similary to [map2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [map2o], and equivalent if [f] is
+ side-effect free and idem-potent ([f k a a = a]).
+ The returned map has bindings for all keys appearing in either
+ [m1] or [m2].
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val iter2zo: (key -> 'a -> unit) -> (key -> 'a -> unit) -> (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ (** [iter2zo f1 f2 f m1 m2] is similar to [iter2o f1 f2 f m1 m2] but,
+ similary to [iter2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [iter2o], and equivalent if [f] is
+ side-effect free.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val fold2zo: (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ (** [fold2zo f1 f2 f m1 m2 a] is similar to [fold2o f1 f2 f m1 m2 a] but,
+ similary to [fold2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [fold2o], and equivalent if
+ [f k a a x = x] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val for_all2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [for_all2zo f1 f2 f m1 m2] is similar to [for_all2o f1 f2 f m1 m2] but,
+ similary to [for_all2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [for_all2o], and equivalent if
+ [f k a a = true] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val exists2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [exists2zo f1 f2 f m1 m2] is similar to [exists2o f1 f2 f m1 m2] but,
+ similary to [exists2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [exists2o], and equivalent if
+ [f k a a = false] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val map_slice: (key -> 'a -> 'a) -> 'a t -> key -> key -> 'a t
+ (** [map_slice f m k1 k2] is similar to [map f m], but only applies
+ [f] to bindings with key greater or equal to [k1] and smaller
+ or equal to [k2] to construct the returned map. Bindings with
+ keys outside this range in [m] are put unchanged in the result.
+ It is as if, outside this range, [f k a = a] and has no effect.
+ The result has the same key set as [m].
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val iter_slice: (key -> 'a -> unit) -> 'a t -> key -> key -> unit
+ (** [iter_slice f m k1 k2] is similar to [iter f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a] has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val fold_slice: (key -> 'a -> 'b -> 'b) -> 'a t -> key -> key -> 'b -> 'b
+ (** [fold_slice f m k1 k2 a] is similar to [fold f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a x = x] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val for_all_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ (** [for_all_slice f m k1 k2 a] is similar to [for_all f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a = true] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val exists_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ (** [exists_slice f m k1 k2 a] is similar to [exists f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a = false] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val key_equal: 'a t -> 'a t -> bool
+ (** [key_equal m1 m2] returns true if [m1] and [m2] are defined
+ over exactly the same set of keys (but with possibly different
+ values).
+ *)
+
+ val key_subset: 'a t -> 'a t -> bool
+ (** [key_equal m1 m2] returns true if [m1] is defined on a subset of
+ the keys of [m2] (but with possibly different values).
+ *)
+
+ val find_greater: key -> 'a t -> key * 'a
+ (** [find_greater k m] returns the binding (key and value) in [m]
+ with key strictly greater than [k] and as small as possible.
+ Raises [Not_found] if [m] has no binding for a key strictly greater
+ than [k].
+ *)
+
+ val find_less: key -> 'a t -> key * 'a
+ (** [find_less k m] returns the binding (key and value) in [m]
+ with key strictly less than [k] and as large as possible.
+ Raises [Not_found] if [m] has no binding for a key strictly less
+ than [k].
+ *)
+
+ val find_greater_equal: key -> 'a t -> key * 'a
+ (** [find_greater_euql k m] returns the binding (key and value) in [m]
+ with key greater or equal to [k] and as small as possible.
+ Raises [Not_found] if [m] has no binding for a key greater or equal
+ to [k].
+ *)
+
+ val find_less_equal: key -> 'a t -> key * 'a
+ (** [find_less_equal k m] returns the binding (key and value) in [m]
+ with key less or equal to [k] and as large as possible.
+ Raises [Not_found] if [m] has no binding for a key less or equal
+ to [k].
+ *)
+
+
+ end
+(** Output signature of the functor {!Map.Make}. *)
+
+module Make (Ord : OrderedType) : S with type key = Ord.t
+(** Functor building an implementation of the map structure
+ given a totally ordered type. *)
diff --git a/libs/util.ml b/libs/util.ml
new file mode 100644
index 0000000..30cf5bf
--- /dev/null
+++ b/libs/util.ml
@@ -0,0 +1,20 @@
+exception TypeError
+
+module VarMap = Mapext.Make(String)
+
+let rec fix equal f s =
+ let fs = f s in
+ if equal fs s
+ then fs
+ else fix equal f fs
+
+let (@@) f x = f x
+
+let print_list x l =
+ Format.printf "%s: " x;
+ let rec aux = function
+ | [] -> ()
+ | [a] -> Format.printf "%s" a
+ | p::q -> Format.printf "%s, " p; aux q
+ in
+ Format.printf "["; aux l; Format.printf "]@.";