summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ansys.com>2014-06-11 16:41:43 +0200
committerAlex Auvolat <alex.auvolat@ansys.com>2014-06-11 16:41:43 +0200
commit36f98d819756ada119e696729e40d8e8e427b5f0 (patch)
treecacac900a6923e68911756c335f0dfaa61fcfba5
downloadscade-analyzer-36f98d819756ada119e696729e40d8e8e427b5f0.tar.gz
scade-analyzer-36f98d819756ada119e696729e40d8e8e427b5f0.zip
Initial commit: parser for tiny subset of SCADE language...
-rw-r--r--.gitignore4
-rw-r--r--Makefile21
-rw-r--r--_tags1
-rw-r--r--frontend/ast.ml76
-rw-r--r--frontend/ast_printer.ml177
-rw-r--r--frontend/file_parser.ml19
-rw-r--r--frontend/lexer.mll105
-rw-r--r--frontend/parser.automaton1577
-rw-r--r--frontend/parser.conflicts32
-rw-r--r--frontend/parser.mly221
-rw-r--r--libs/mapext.ml741
-rw-r--r--libs/mapext.mli473
-rw-r--r--libs/util.ml20
-rw-r--r--main.ml25
14 files changed, 3492 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..ca7415d
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,4 @@
+*.swp
+_build
+analyze
+*~
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..5e785e0
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,21 @@
+.PHONY: clean
+
+BIN=analyze
+SRCDIRS=libs,frontend
+
+SRC= main.ml \
+ frontend/ast.ml \
+ frontend/parser.mly \
+ frontend/lexer.mll \
+ frontend/ast_printer.ml
+
+all: $(BIN)
+
+$(BIN): $(SRC)
+ ocamlbuild -Is $(SRCDIRS) -cflags '-I +zarith -I +apron -I +gmp' \
+ -lflags '-I +zarith -I +apron -I +gmp zarith.cmxa bigarray.cmxa gmp.cmxa apron.cmxa polkaMPQ.cmxa' \
+ main.native
+ mv main.native $(BIN)
+
+clean:
+ rm -rf _build
diff --git a/_tags b/_tags
new file mode 100644
index 0000000..25bfa60
--- /dev/null
+++ b/_tags
@@ -0,0 +1 @@
+true: use_menhir
diff --git a/frontend/ast.ml b/frontend/ast.ml
new file mode 100644
index 0000000..180608c
--- /dev/null
+++ b/frontend/ast.ml
@@ -0,0 +1,76 @@
+open Lexing
+
+type position = Lexing.position
+let position_unknown = Lexing.dummy_pos
+
+type extent = position * position
+let extent_unknown = (position_unknown, position_unknown)
+
+type 'a ext = 'a * extent
+
+type id = string
+
+type typ =
+ | AST_TINT
+ | AST_TBOOL
+ | AST_TREAL
+
+type unary_op =
+ | AST_UPLUS
+ | AST_UMINUS
+ | AST_NOT
+ | AST_PRE
+
+type binary_op =
+ | AST_PLUS
+ | AST_MINUS
+ | AST_MUL
+ | AST_DIV
+ | AST_MOD
+
+ | AST_EQ
+ | AST_NE
+
+ | AST_LT
+ | AST_LE
+ | AST_GT
+ | AST_GE
+
+ | AST_AND
+ | AST_OR
+
+ | AST_ARROW
+
+type expr =
+ | AST_unary of unary_op * (expr ext)
+ | AST_binary of binary_op * (expr ext) * (expr ext)
+ | AST_identifier of id ext
+ | AST_int_const of string ext
+ | AST_bool_const of bool
+ | AST_real_const of string ext
+ | AST_if of (expr ext) * (expr ext) * (expr ext)
+ | AST_instance of (id ext) * (expr ext list)
+
+type lvalue = id
+
+type eqn =
+ | AST_assign of (lvalue ext) * (expr ext)
+ | AST_guarantee of (id ext) * (expr ext)
+ | AST_assume of (id ext) * (expr ext)
+ (* and more : automaton, activate... *)
+
+type node_decl = {
+ name : id;
+ args : (bool * (id ext) * typ) list;
+ ret : (bool * (id ext) * typ) list;
+ var : (bool * (id ext) * typ) list;
+ body : eqn ext list;
+}
+
+type const_decl = (id ext) * typ * (expr ext)
+
+type toplevel =
+ | AST_node_decl of node_decl ext
+ | AST_const_decl of const_decl ext
+
+type prog = toplevel list
diff --git a/frontend/ast_printer.ml b/frontend/ast_printer.ml
new file mode 100644
index 0000000..a02b970
--- /dev/null
+++ b/frontend/ast_printer.ml
@@ -0,0 +1,177 @@
+open Ast
+open Lexing
+
+
+(* Locations *)
+
+let string_of_position p =
+ Printf.sprintf "%s:%i:%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol)
+
+let string_of_extent (p,q) =
+ if p.pos_fname = q.pos_fname then
+ if p.pos_lnum = q.pos_lnum then
+ if p.pos_cnum = q.pos_cnum then
+ Printf.sprintf "%s:%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol)
+ else
+ Printf.sprintf "%s:%i.%i-%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) (q.pos_cnum - q.pos_bol)
+ else
+ Printf.sprintf "%s:%i.%i-%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) q.pos_lnum (q.pos_cnum - q.pos_bol)
+ else
+ Printf.sprintf "%s:%i.%i-%s:%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) q.pos_fname q.pos_lnum (q.pos_cnum - q.pos_bol)
+
+
+(* Operators *)
+
+let string_of_unary_op = function
+ | AST_UPLUS -> "+"
+ | AST_UMINUS -> "-"
+ | AST_NOT -> "not"
+ | AST_PRE -> "pre"
+
+let string_of_binary_op = function
+ | AST_MUL -> "*"
+ | AST_DIV -> "/"
+ | AST_MOD -> "mod"
+ | AST_PLUS -> "+"
+ | AST_MINUS -> "-"
+ | AST_EQ -> "="
+ | AST_NE -> "<>"
+ | AST_LT -> "<"
+ | AST_LE -> "<="
+ | AST_GT -> ">"
+ | AST_GE -> ">="
+ | AST_AND -> "and"
+ | AST_OR -> "or"
+ | AST_ARROW -> "->"
+
+
+let binary_precedence = function
+ | AST_MUL| AST_DIV| AST_MOD-> 7
+ | AST_PLUS | AST_MINUS -> 6
+ | AST_EQ | AST_NE -> 5
+ | AST_LT | AST_LE | AST_GT | AST_GE -> 4
+ | AST_AND -> 3
+ | AST_OR -> 2
+ | AST_ARROW -> 1
+
+let expr_precedence = function
+ | AST_unary (op, _) -> 99
+ | AST_binary(op, _, _) -> binary_precedence op
+ | _ -> 100
+
+(* utility *)
+
+let print_list f sep fmt l =
+ let rec aux = function
+ | [] -> ()
+ | [a] -> f fmt a
+ | a::b -> f fmt a; Format.pp_print_string fmt sep; aux b
+ in
+ aux l
+
+(* types *)
+
+let string_of_typ = function
+ | AST_TINT -> "int"
+ | AST_TBOOL -> "bool"
+ | AST_TREAL -> "real"
+
+(* expressions *)
+
+let print_id fmt v =
+ Format.pp_print_string fmt v
+
+let rec print_expr fmt e =
+ match e with
+
+ | AST_unary (op,(e1,_)) ->
+ Format.pp_print_string fmt (string_of_unary_op op);
+ if expr_precedence e1 <= expr_precedence e
+ then Format.fprintf fmt " (%a)" print_expr e1
+ else Format.fprintf fmt " %a" print_expr e1
+
+ | AST_binary (op,(e1,_),(e2,_)) ->
+ if expr_precedence e1 < expr_precedence e
+ then Format.fprintf fmt "(%a) " print_expr e1
+ else Format.fprintf fmt "%a " print_expr e1;
+ Format.pp_print_string fmt (string_of_binary_op op);
+ if expr_precedence e2 <= expr_precedence e
+ then Format.fprintf fmt " (%a)" print_expr e2
+ else Format.fprintf fmt " %a" print_expr e2
+
+ | AST_int_const (i,_) -> Format.pp_print_string fmt i
+
+ | AST_real_const (i,_) -> Format.pp_print_string fmt i
+
+ | AST_bool_const b -> Format.pp_print_bool fmt b
+
+ | AST_if((c,_), (t,_), (e,_)) -> Format.fprintf fmt
+ "if %a then %a else %a"
+ print_expr c print_expr t print_expr e
+
+ | AST_identifier (v,_) -> print_id fmt v
+
+ | AST_instance ((i,_),l) ->
+ Format.fprintf fmt "%a(%a)"
+ print_id i (print_list print_expr ",") (List.map fst l)
+
+let print_lvalue fmt v =
+ Format.pp_print_string fmt v
+
+(* equations *)
+
+let indent ind = ind^" "
+
+let rec print_eqn ind fmt = function
+
+ | AST_assign ((v,_),(e,_)) ->
+ Format.fprintf fmt "%s%a = %a;@\n"
+ ind print_lvalue v print_expr e
+ | AST_assume((i, _), (e, _)) ->
+ Format.fprintf fmt "%sassume %s : %a;@\n"
+ ind i print_expr e
+ | AST_guarantee((i, _), (e, _)) ->
+ Format.fprintf fmt "%sguarantee %s : %a;@\n"
+ ind i print_expr e
+
+and print_block ind fmt b =
+ List.iter (fun (bb,_) -> print_eqn (indent ind) fmt bb) b
+
+(* declarations *)
+
+let print_var_decl fmt (pr, (i, _), ty) =
+ Format.fprintf fmt "%s%s: %s"
+ (if pr then "probe " else "")
+ i
+ (string_of_typ ty)
+
+let rec print_var_decls fmt = function
+ | [] -> ()
+ | [a] -> print_var_decl fmt a
+ | a::r ->
+ print_var_decl fmt a;
+ Format.fprintf fmt "; ";
+ print_var_decls fmt r
+
+let print_node_decl fmt d =
+ Format.fprintf fmt "node %s(%a) returns(%a)@\n"
+ d.name
+ print_var_decls d.args
+ print_var_decls d.ret;
+ if d.var <> [] then
+ Format.fprintf fmt "var %a@\n" print_var_decls d.var;
+ Format.fprintf fmt "let@\n%atel@\n@\n"
+ (print_block "") d.body
+
+let print_const_decl fmt ((i, _), ty, (e, _)) =
+ Format.fprintf fmt
+ "const %s: %s = %a@\n@\n"
+ i (string_of_typ ty)
+ print_expr e
+
+let print_toplevel fmt = function
+ | AST_node_decl (n, _) -> print_node_decl fmt n
+ | AST_const_decl (c, _) -> print_const_decl fmt c
+
+let print_prog fmt p =
+ List.iter (print_toplevel fmt) p
diff --git a/frontend/file_parser.ml b/frontend/file_parser.ml
new file mode 100644
index 0000000..0e975ce
--- /dev/null
+++ b/frontend/file_parser.ml
@@ -0,0 +1,19 @@
+open Ast
+open Ast_printer
+open Lexing
+
+let parse_file (filename : string) : prog =
+ let f = open_in filename in
+ let lex = from_channel f in
+ try
+ lex.lex_curr_p <- { lex.lex_curr_p with pos_fname = filename; };
+ Parser.file Lexer.token lex
+ with
+ | Parser.Error ->
+ Printf.eprintf "Parse error (invalid syntax) near %s\n"
+ (string_of_position lex.lex_start_p);
+ failwith "Parse error"
+ | Failure "lexing: empty token" ->
+ Printf.eprintf "Parse error (invalid token) near %s\n"
+ (string_of_position lex.lex_start_p);
+ failwith "Parse error"
diff --git a/frontend/lexer.mll b/frontend/lexer.mll
new file mode 100644
index 0000000..9d6c208
--- /dev/null
+++ b/frontend/lexer.mll
@@ -0,0 +1,105 @@
+{
+ open Lexing
+ open Ast
+ open Parser
+
+ let kwd_table = Hashtbl.create 10
+ let () =
+ List.iter (fun (a, b) -> Hashtbl.add kwd_table a b)
+ [
+ "bool", BOOL;
+ "int", INT;
+ "real", REAL;
+
+ "const", CONST;
+ "node", NODE;
+ "returns", RETURNS;
+ "var", VAR;
+ "let", LET;
+ "tel", TEL;
+
+ "if", IF;
+ "then", THEN;
+ "else", ELSE;
+ "pre", PRE;
+ "not", NOT;
+ "and", AND;
+ "or", OR;
+ "mod", MOD;
+
+ "true", TRUE;
+ "false", FALSE;
+
+ "assume", ASSUME;
+ "guarantee",GUARANTEE;
+ "probe", PROBE;
+ ]
+
+}
+
+
+(* special character classes *)
+let space = [' ' '\t' '\r']+
+let newline = "\n" | "\r" | "\r\n"
+
+(* utilities *)
+let digit = ['0'-'9']
+let digit_ = ['0'-'9' '_']
+
+(* integers *)
+let int_dec = digit digit_*
+let int_bin = ("0b" | "0B") ['0'-'1'] ['0'-'1' '_']*
+let int_oct = ("0o" | "0O") ['0'-'7'] ['0'-'7' '_']*
+let int_hex = ("0x" | "0X") ['0'-'9' 'a'-'f' 'A'-'F'] ['0'-'9' 'a'-'f' 'A'-'F' '_']*
+let const_int = int_bin | int_oct | int_dec | int_hex
+
+(* tokens *)
+rule token = parse
+
+(* identifier (TOK_id) or reserved keyword *)
+| ['a'-'z' 'A'-'Z' '_'] ['a'-'z' 'A'-'Z' '0'-'9' '_']* as id
+{ try Hashtbl.find kwd_table id with Not_found -> IDENT id }
+
+(* symbols *)
+| "(" { LPAREN }
+| ")" { RPAREN }
+| "{" { LCURLY }
+| "}" { RCURLY }
+| "*" { STAR }
+| "+" { PLUS }
+| "-" { MINUS }
+| "!" { EXCLAIM }
+| "/" { DIVIDE }
+| "%" { PERCENT }
+| "<" { LESS }
+| ">" { GREATER }
+| "<=" { LESS_EQUAL }
+| ">=" { GREATER_EQUAL }
+| "==" { EQUAL_EQUAL }
+| "<>" { DIFF }
+| "&&" { AND_AND }
+| "||" { BAR_BAR }
+| ";" { SEMICOLON }
+| ":" { COLON }
+| "," { COMMA }
+| "=" { EQUAL }
+| "->" { ARROW }
+
+(* literals *)
+| const_int as c { INTVAL c }
+
+(* spaces, comments *)
+| "(*" { comment lexbuf; token lexbuf }
+| "--" [^ '\n' '\r']* { token lexbuf }
+| newline { new_line lexbuf; token lexbuf }
+| space { token lexbuf }
+
+(* end of files *)
+| eof { EOF }
+
+
+(* nested comments (handled recursively) *)
+and comment = parse
+| "*)" { () }
+| [^ '\n' '\r'] { comment lexbuf }
+| newline { new_line lexbuf; comment lexbuf }
diff --git a/frontend/parser.automaton b/frontend/parser.automaton
new file mode 100644
index 0000000..dff892b
--- /dev/null
+++ b/frontend/parser.automaton
@@ -0,0 +1,1577 @@
+State 0:
+file' -> . file [ # ]
+-- On NODE shift to state 1
+-- On CONST shift to state 103
+-- On toplevel shift to state 109
+-- On node_decl shift to state 110
+-- On list(toplevel) shift to state 113
+-- On file shift to state 115
+-- On const_decl shift to state 112
+-- On EOF reduce production list(toplevel) ->
+
+State 1:
+node_decl -> NODE . IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On IDENT shift to state 2
+
+State 2:
+node_decl -> NODE IDENT . LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On LPAREN shift to state 3
+
+State 3:
+node_decl -> NODE IDENT LPAREN . vars RPAREN RETURNS vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On IDENT shift to state 4
+-- On vars shift to state 10
+-- On var shift to state 98
+-- On separated_nonempty_list(SEMICOLON,var) shift to state 101
+-- On loption(separated_nonempty_list(SEMICOLON,var)) shift to state 102
+-- On RPAREN reduce production loption(separated_nonempty_list(SEMICOLON,var)) ->
+
+State 4:
+var -> IDENT . COLON typ [ SEMICOLON RPAREN ]
+-- On COLON shift to state 5
+
+State 5:
+var -> IDENT COLON . typ [ SEMICOLON RPAREN ]
+-- On REAL shift to state 6
+-- On INT shift to state 7
+-- On BOOL shift to state 8
+-- On typ shift to state 9
+
+State 6:
+typ -> REAL . [ SEMICOLON RPAREN EQUAL ]
+-- On SEMICOLON reduce production typ -> REAL
+-- On RPAREN reduce production typ -> REAL
+-- On EQUAL reduce production typ -> REAL
+
+State 7:
+typ -> INT . [ SEMICOLON RPAREN EQUAL ]
+-- On SEMICOLON reduce production typ -> INT
+-- On RPAREN reduce production typ -> INT
+-- On EQUAL reduce production typ -> INT
+
+State 8:
+typ -> BOOL . [ SEMICOLON RPAREN EQUAL ]
+-- On SEMICOLON reduce production typ -> BOOL
+-- On RPAREN reduce production typ -> BOOL
+-- On EQUAL reduce production typ -> BOOL
+
+State 9:
+var -> IDENT COLON typ . [ SEMICOLON RPAREN ]
+-- On SEMICOLON reduce production var -> IDENT COLON typ
+-- On RPAREN reduce production var -> IDENT COLON typ
+
+State 10:
+node_decl -> NODE IDENT LPAREN vars . RPAREN RETURNS vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On RPAREN shift to state 11
+
+State 11:
+node_decl -> NODE IDENT LPAREN vars RPAREN . RETURNS vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On RETURNS shift to state 12
+
+State 12:
+node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS . vars RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On IDENT shift to state 4
+-- On vars shift to state 13
+-- On var shift to state 98
+-- On separated_nonempty_list(SEMICOLON,var) shift to state 101
+-- On loption(separated_nonempty_list(SEMICOLON,var)) shift to state 102
+-- On RPAREN reduce production loption(separated_nonempty_list(SEMICOLON,var)) ->
+
+State 13:
+node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars . RPAREN var_decl dbody [ NODE EOF CONST ]
+-- On RPAREN shift to state 14
+
+State 14:
+node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN . var_decl dbody [ NODE EOF CONST ]
+-- On VAR shift to state 15
+-- On var_decl shift to state 20
+-- On LET reduce production var_decl ->
+-- On IDENT reduce production var_decl ->
+-- On GUARANTEE reduce production var_decl ->
+-- On ASSUME reduce production var_decl ->
+
+State 15:
+var_decl -> VAR . nonempty_list(terminated(var,SEMICOLON)) [ LET IDENT GUARANTEE ASSUME ]
+-- On IDENT shift to state 4
+-- On var shift to state 16
+-- On nonempty_list(terminated(var,SEMICOLON)) shift to state 19
+
+State 16:
+nonempty_list(terminated(var,SEMICOLON)) -> var . SEMICOLON [ LET IDENT GUARANTEE ASSUME ]
+nonempty_list(terminated(var,SEMICOLON)) -> var . SEMICOLON nonempty_list(terminated(var,SEMICOLON)) [ LET IDENT GUARANTEE ASSUME ]
+-- On SEMICOLON shift to state 17
+
+State 17:
+nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON . [ LET IDENT GUARANTEE ASSUME ]
+nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON . nonempty_list(terminated(var,SEMICOLON)) [ LET IDENT GUARANTEE ASSUME ]
+-- On IDENT shift to state 4
+-- On var shift to state 16
+-- On nonempty_list(terminated(var,SEMICOLON)) shift to state 18
+-- On LET reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON
+-- On IDENT reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON
+-- On GUARANTEE reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON
+-- On ASSUME reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON
+** Conflict on IDENT
+
+State 18:
+nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON nonempty_list(terminated(var,SEMICOLON)) . [ LET IDENT GUARANTEE ASSUME ]
+-- On LET reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON nonempty_list(terminated(var,SEMICOLON))
+-- On IDENT reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON nonempty_list(terminated(var,SEMICOLON))
+-- On GUARANTEE reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON nonempty_list(terminated(var,SEMICOLON))
+-- On ASSUME reduce production nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON nonempty_list(terminated(var,SEMICOLON))
+
+State 19:
+var_decl -> VAR nonempty_list(terminated(var,SEMICOLON)) . [ LET IDENT GUARANTEE ASSUME ]
+-- On LET reduce production var_decl -> VAR nonempty_list(terminated(var,SEMICOLON))
+-- On IDENT reduce production var_decl -> VAR nonempty_list(terminated(var,SEMICOLON))
+-- On GUARANTEE reduce production var_decl -> VAR nonempty_list(terminated(var,SEMICOLON))
+-- On ASSUME reduce production var_decl -> VAR nonempty_list(terminated(var,SEMICOLON))
+
+State 20:
+node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl . dbody [ NODE EOF CONST ]
+-- On LET shift to state 21
+-- On IDENT shift to state 22
+-- On GUARANTEE shift to state 23
+-- On ASSUME shift to state 83
+-- On lvalue shift to state 89
+-- On eqn shift to state 95
+-- On dbody shift to state 97
+
+State 21:
+dbody -> LET . separated_nonempty_list(SEMICOLON,ext(eqn)) TEL [ NODE EOF CONST ]
+-- On IDENT shift to state 22
+-- On GUARANTEE shift to state 23
+-- On ASSUME shift to state 83
+-- On separated_nonempty_list(SEMICOLON,ext(eqn)) shift to state 87
+-- On lvalue shift to state 89
+-- On eqn shift to state 92
+
+State 22:
+lvalue -> IDENT . [ EQUAL ]
+-- On EQUAL reduce production lvalue -> IDENT
+
+State 23:
+eqn -> GUARANTEE . IDENT COLON expr [ TEL SEMICOLON ]
+-- On IDENT shift to state 24
+
+State 24:
+eqn -> GUARANTEE IDENT . COLON expr [ TEL SEMICOLON ]
+-- On COLON shift to state 25
+
+State 25:
+eqn -> GUARANTEE IDENT COLON . expr [ TEL SEMICOLON ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 82
+-- On binary_expr shift to state 45
+
+State 26:
+primary_expr -> TRUE . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production primary_expr -> TRUE
+-- On TEL reduce production primary_expr -> TRUE
+-- On STAR reduce production primary_expr -> TRUE
+-- On SEMICOLON reduce production primary_expr -> TRUE
+-- On RPAREN reduce production primary_expr -> TRUE
+-- On PLUS reduce production primary_expr -> TRUE
+-- On PERCENT reduce production primary_expr -> TRUE
+-- On NOT_EQUAL reduce production primary_expr -> TRUE
+-- On NODE reduce production primary_expr -> TRUE
+-- On MINUS reduce production primary_expr -> TRUE
+-- On LESS_EQUAL reduce production primary_expr -> TRUE
+-- On LESS reduce production primary_expr -> TRUE
+-- On GREATER_EQUAL reduce production primary_expr -> TRUE
+-- On GREATER reduce production primary_expr -> TRUE
+-- On EQUAL_EQUAL reduce production primary_expr -> TRUE
+-- On EOF reduce production primary_expr -> TRUE
+-- On ELSE reduce production primary_expr -> TRUE
+-- On DIVIDE reduce production primary_expr -> TRUE
+-- On CONST reduce production primary_expr -> TRUE
+-- On COMMA reduce production primary_expr -> TRUE
+-- On BAR_BAR reduce production primary_expr -> TRUE
+-- On AND_AND reduce production primary_expr -> TRUE
+
+State 27:
+unary_expr -> PLUS . unary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 81
+-- On primary_expr shift to state 38
+
+State 28:
+unary_expr -> NOT . unary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 80
+-- On primary_expr shift to state 38
+
+State 29:
+unary_expr -> MINUS . unary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 79
+-- On primary_expr shift to state 38
+
+State 30:
+primary_expr -> LPAREN . expr RPAREN [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 77
+-- On binary_expr shift to state 45
+
+State 31:
+primary_expr -> INTVAL . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production primary_expr -> INTVAL
+-- On TEL reduce production primary_expr -> INTVAL
+-- On STAR reduce production primary_expr -> INTVAL
+-- On SEMICOLON reduce production primary_expr -> INTVAL
+-- On RPAREN reduce production primary_expr -> INTVAL
+-- On PLUS reduce production primary_expr -> INTVAL
+-- On PERCENT reduce production primary_expr -> INTVAL
+-- On NOT_EQUAL reduce production primary_expr -> INTVAL
+-- On NODE reduce production primary_expr -> INTVAL
+-- On MINUS reduce production primary_expr -> INTVAL
+-- On LESS_EQUAL reduce production primary_expr -> INTVAL
+-- On LESS reduce production primary_expr -> INTVAL
+-- On GREATER_EQUAL reduce production primary_expr -> INTVAL
+-- On GREATER reduce production primary_expr -> INTVAL
+-- On EQUAL_EQUAL reduce production primary_expr -> INTVAL
+-- On EOF reduce production primary_expr -> INTVAL
+-- On ELSE reduce production primary_expr -> INTVAL
+-- On DIVIDE reduce production primary_expr -> INTVAL
+-- On CONST reduce production primary_expr -> INTVAL
+-- On COMMA reduce production primary_expr -> INTVAL
+-- On BAR_BAR reduce production primary_expr -> INTVAL
+-- On AND_AND reduce production primary_expr -> INTVAL
+
+State 32:
+if_expr -> IF . expr THEN expr ELSE expr [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 72
+-- On binary_expr shift to state 45
+
+State 33:
+primary_expr -> IDENT . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+primary_expr -> IDENT . LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On LPAREN shift to state 34
+-- On THEN reduce production primary_expr -> IDENT
+-- On TEL reduce production primary_expr -> IDENT
+-- On STAR reduce production primary_expr -> IDENT
+-- On SEMICOLON reduce production primary_expr -> IDENT
+-- On RPAREN reduce production primary_expr -> IDENT
+-- On PLUS reduce production primary_expr -> IDENT
+-- On PERCENT reduce production primary_expr -> IDENT
+-- On NOT_EQUAL reduce production primary_expr -> IDENT
+-- On NODE reduce production primary_expr -> IDENT
+-- On MINUS reduce production primary_expr -> IDENT
+-- On LESS_EQUAL reduce production primary_expr -> IDENT
+-- On LESS reduce production primary_expr -> IDENT
+-- On GREATER_EQUAL reduce production primary_expr -> IDENT
+-- On GREATER reduce production primary_expr -> IDENT
+-- On EQUAL_EQUAL reduce production primary_expr -> IDENT
+-- On EOF reduce production primary_expr -> IDENT
+-- On ELSE reduce production primary_expr -> IDENT
+-- On DIVIDE reduce production primary_expr -> IDENT
+-- On CONST reduce production primary_expr -> IDENT
+-- On COMMA reduce production primary_expr -> IDENT
+-- On BAR_BAR reduce production primary_expr -> IDENT
+-- On AND_AND reduce production primary_expr -> IDENT
+
+State 34:
+primary_expr -> IDENT LPAREN . loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On separated_nonempty_list(COMMA,ext(expr)) shift to state 37
+-- On primary_expr shift to state 38
+-- On loption(separated_nonempty_list(COMMA,ext(expr))) shift to state 39
+-- On if_expr shift to state 41
+-- On expr shift to state 42
+-- On binary_expr shift to state 45
+-- On RPAREN reduce production loption(separated_nonempty_list(COMMA,ext(expr))) ->
+
+State 35:
+primary_expr -> FALSE . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production primary_expr -> FALSE
+-- On TEL reduce production primary_expr -> FALSE
+-- On STAR reduce production primary_expr -> FALSE
+-- On SEMICOLON reduce production primary_expr -> FALSE
+-- On RPAREN reduce production primary_expr -> FALSE
+-- On PLUS reduce production primary_expr -> FALSE
+-- On PERCENT reduce production primary_expr -> FALSE
+-- On NOT_EQUAL reduce production primary_expr -> FALSE
+-- On NODE reduce production primary_expr -> FALSE
+-- On MINUS reduce production primary_expr -> FALSE
+-- On LESS_EQUAL reduce production primary_expr -> FALSE
+-- On LESS reduce production primary_expr -> FALSE
+-- On GREATER_EQUAL reduce production primary_expr -> FALSE
+-- On GREATER reduce production primary_expr -> FALSE
+-- On EQUAL_EQUAL reduce production primary_expr -> FALSE
+-- On EOF reduce production primary_expr -> FALSE
+-- On ELSE reduce production primary_expr -> FALSE
+-- On DIVIDE reduce production primary_expr -> FALSE
+-- On CONST reduce production primary_expr -> FALSE
+-- On COMMA reduce production primary_expr -> FALSE
+-- On BAR_BAR reduce production primary_expr -> FALSE
+-- On AND_AND reduce production primary_expr -> FALSE
+
+State 36:
+binary_expr -> unary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production binary_expr -> unary_expr
+-- On TEL reduce production binary_expr -> unary_expr
+-- On STAR reduce production binary_expr -> unary_expr
+-- On SEMICOLON reduce production binary_expr -> unary_expr
+-- On RPAREN reduce production binary_expr -> unary_expr
+-- On PLUS reduce production binary_expr -> unary_expr
+-- On PERCENT reduce production binary_expr -> unary_expr
+-- On NOT_EQUAL reduce production binary_expr -> unary_expr
+-- On NODE reduce production binary_expr -> unary_expr
+-- On MINUS reduce production binary_expr -> unary_expr
+-- On LESS_EQUAL reduce production binary_expr -> unary_expr
+-- On LESS reduce production binary_expr -> unary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> unary_expr
+-- On GREATER reduce production binary_expr -> unary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> unary_expr
+-- On EOF reduce production binary_expr -> unary_expr
+-- On ELSE reduce production binary_expr -> unary_expr
+-- On DIVIDE reduce production binary_expr -> unary_expr
+-- On CONST reduce production binary_expr -> unary_expr
+-- On COMMA reduce production binary_expr -> unary_expr
+-- On BAR_BAR reduce production binary_expr -> unary_expr
+-- On AND_AND reduce production binary_expr -> unary_expr
+
+State 37:
+loption(separated_nonempty_list(COMMA,ext(expr))) -> separated_nonempty_list(COMMA,ext(expr)) . [ RPAREN ]
+-- On RPAREN reduce production loption(separated_nonempty_list(COMMA,ext(expr))) -> separated_nonempty_list(COMMA,ext(expr))
+
+State 38:
+unary_expr -> primary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production unary_expr -> primary_expr
+-- On TEL reduce production unary_expr -> primary_expr
+-- On STAR reduce production unary_expr -> primary_expr
+-- On SEMICOLON reduce production unary_expr -> primary_expr
+-- On RPAREN reduce production unary_expr -> primary_expr
+-- On PLUS reduce production unary_expr -> primary_expr
+-- On PERCENT reduce production unary_expr -> primary_expr
+-- On NOT_EQUAL reduce production unary_expr -> primary_expr
+-- On NODE reduce production unary_expr -> primary_expr
+-- On MINUS reduce production unary_expr -> primary_expr
+-- On LESS_EQUAL reduce production unary_expr -> primary_expr
+-- On LESS reduce production unary_expr -> primary_expr
+-- On GREATER_EQUAL reduce production unary_expr -> primary_expr
+-- On GREATER reduce production unary_expr -> primary_expr
+-- On EQUAL_EQUAL reduce production unary_expr -> primary_expr
+-- On EOF reduce production unary_expr -> primary_expr
+-- On ELSE reduce production unary_expr -> primary_expr
+-- On DIVIDE reduce production unary_expr -> primary_expr
+-- On CONST reduce production unary_expr -> primary_expr
+-- On COMMA reduce production unary_expr -> primary_expr
+-- On BAR_BAR reduce production unary_expr -> primary_expr
+-- On AND_AND reduce production unary_expr -> primary_expr
+
+State 39:
+primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) . RPAREN [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On RPAREN shift to state 40
+
+State 40:
+primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On TEL reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On STAR reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On SEMICOLON reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On RPAREN reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On PLUS reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On PERCENT reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On NOT_EQUAL reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On NODE reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On MINUS reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On LESS_EQUAL reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On LESS reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On GREATER_EQUAL reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On GREATER reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On EQUAL_EQUAL reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On EOF reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On ELSE reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On DIVIDE reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On CONST reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On COMMA reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On BAR_BAR reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+-- On AND_AND reduce production primary_expr -> IDENT LPAREN loption(separated_nonempty_list(COMMA,ext(expr))) RPAREN
+
+State 41:
+expr -> if_expr . [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On THEN reduce production expr -> if_expr
+-- On TEL reduce production expr -> if_expr
+-- On SEMICOLON reduce production expr -> if_expr
+-- On RPAREN reduce production expr -> if_expr
+-- On NODE reduce production expr -> if_expr
+-- On EOF reduce production expr -> if_expr
+-- On ELSE reduce production expr -> if_expr
+-- On CONST reduce production expr -> if_expr
+-- On COMMA reduce production expr -> if_expr
+
+State 42:
+separated_nonempty_list(COMMA,ext(expr)) -> expr . [ RPAREN ]
+separated_nonempty_list(COMMA,ext(expr)) -> expr . COMMA separated_nonempty_list(COMMA,ext(expr)) [ RPAREN ]
+-- On COMMA shift to state 43
+-- On RPAREN reduce production separated_nonempty_list(COMMA,ext(expr)) -> expr
+
+State 43:
+separated_nonempty_list(COMMA,ext(expr)) -> expr COMMA . separated_nonempty_list(COMMA,ext(expr)) [ RPAREN ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On separated_nonempty_list(COMMA,ext(expr)) shift to state 44
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 42
+-- On binary_expr shift to state 45
+
+State 44:
+separated_nonempty_list(COMMA,ext(expr)) -> expr COMMA separated_nonempty_list(COMMA,ext(expr)) . [ RPAREN ]
+-- On RPAREN reduce production separated_nonempty_list(COMMA,ext(expr)) -> expr COMMA separated_nonempty_list(COMMA,ext(expr))
+
+State 45:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+if_expr -> binary_expr . [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On NOT_EQUAL shift to state 54
+-- On MINUS shift to state 56
+-- On LESS_EQUAL shift to state 58
+-- On LESS shift to state 60
+-- On GREATER_EQUAL shift to state 62
+-- On GREATER shift to state 64
+-- On EQUAL_EQUAL shift to state 66
+-- On DIVIDE shift to state 52
+-- On BAR_BAR shift to state 68
+-- On AND_AND shift to state 70
+-- On THEN reduce production if_expr -> binary_expr
+-- On TEL reduce production if_expr -> binary_expr
+-- On SEMICOLON reduce production if_expr -> binary_expr
+-- On RPAREN reduce production if_expr -> binary_expr
+-- On NODE reduce production if_expr -> binary_expr
+-- On EOF reduce production if_expr -> binary_expr
+-- On ELSE reduce production if_expr -> binary_expr
+-- On CONST reduce production if_expr -> binary_expr
+-- On COMMA reduce production if_expr -> binary_expr
+
+State 46:
+binary_expr -> binary_expr STAR . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 47
+
+State 47:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr STAR binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production binary_expr -> binary_expr STAR binary_expr
+-- On TEL reduce production binary_expr -> binary_expr STAR binary_expr
+-- On STAR reduce production binary_expr -> binary_expr STAR binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr STAR binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr STAR binary_expr
+-- On PLUS reduce production binary_expr -> binary_expr STAR binary_expr
+-- On PERCENT reduce production binary_expr -> binary_expr STAR binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr STAR binary_expr
+-- On NODE reduce production binary_expr -> binary_expr STAR binary_expr
+-- On MINUS reduce production binary_expr -> binary_expr STAR binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr STAR binary_expr
+-- On LESS reduce production binary_expr -> binary_expr STAR binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr STAR binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr STAR binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr STAR binary_expr
+-- On EOF reduce production binary_expr -> binary_expr STAR binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr STAR binary_expr
+-- On DIVIDE reduce production binary_expr -> binary_expr STAR binary_expr
+-- On CONST reduce production binary_expr -> binary_expr STAR binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr STAR binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr STAR binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr STAR binary_expr
+
+State 48:
+binary_expr -> binary_expr PLUS . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 49
+
+State 49:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr PLUS binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PERCENT shift to state 50
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On TEL reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On PLUS reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On NODE reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On MINUS reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On LESS reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On EOF reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On CONST reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr PLUS binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr PLUS binary_expr
+
+State 50:
+binary_expr -> binary_expr PERCENT . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 51
+
+State 51:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr PERCENT binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On TEL reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On STAR reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On PLUS reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On PERCENT reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On NODE reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On MINUS reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On LESS reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On EOF reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On DIVIDE reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On CONST reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr PERCENT binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr PERCENT binary_expr
+
+State 52:
+binary_expr -> binary_expr DIVIDE . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 53
+
+State 53:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr DIVIDE binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On TEL reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On STAR reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On PLUS reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On PERCENT reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On NODE reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On MINUS reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On LESS reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On EOF reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On DIVIDE reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On CONST reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr DIVIDE binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr DIVIDE binary_expr
+
+State 54:
+binary_expr -> binary_expr NOT_EQUAL . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 55
+
+State 55:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr NOT_EQUAL binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On LESS_EQUAL shift to state 58
+-- On LESS shift to state 60
+-- On GREATER_EQUAL shift to state 62
+-- On GREATER shift to state 64
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On TEL reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On NODE reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On EOF reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On CONST reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr NOT_EQUAL binary_expr
+
+State 56:
+binary_expr -> binary_expr MINUS . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 57
+
+State 57:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr MINUS binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PERCENT shift to state 50
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On TEL reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On PLUS reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On NODE reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On MINUS reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On LESS reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On EOF reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On CONST reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr MINUS binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr MINUS binary_expr
+
+State 58:
+binary_expr -> binary_expr LESS_EQUAL . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 59
+
+State 59:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr LESS_EQUAL binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On TEL reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On NODE reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On LESS reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On EOF reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On CONST reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr LESS_EQUAL binary_expr
+
+State 60:
+binary_expr -> binary_expr LESS . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 61
+
+State 61:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr LESS binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr LESS binary_expr
+-- On TEL reduce production binary_expr -> binary_expr LESS binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr LESS binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr LESS binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr LESS binary_expr
+-- On NODE reduce production binary_expr -> binary_expr LESS binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr LESS binary_expr
+-- On LESS reduce production binary_expr -> binary_expr LESS binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr LESS binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr LESS binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr LESS binary_expr
+-- On EOF reduce production binary_expr -> binary_expr LESS binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr LESS binary_expr
+-- On CONST reduce production binary_expr -> binary_expr LESS binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr LESS binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr LESS binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr LESS binary_expr
+
+State 62:
+binary_expr -> binary_expr GREATER_EQUAL . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 63
+
+State 63:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr GREATER_EQUAL binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On TEL reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On NODE reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On LESS reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On EOF reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On CONST reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr GREATER_EQUAL binary_expr
+
+State 64:
+binary_expr -> binary_expr GREATER . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 65
+
+State 65:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr GREATER binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On TEL reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On NODE reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On LESS_EQUAL reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On LESS reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On GREATER_EQUAL reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On GREATER reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On EOF reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On CONST reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr GREATER binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr GREATER binary_expr
+
+State 66:
+binary_expr -> binary_expr EQUAL_EQUAL . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 67
+
+State 67:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr EQUAL_EQUAL binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On MINUS shift to state 56
+-- On LESS_EQUAL shift to state 58
+-- On LESS shift to state 60
+-- On GREATER_EQUAL shift to state 62
+-- On GREATER shift to state 64
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On TEL reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On NOT_EQUAL reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On NODE reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On EQUAL_EQUAL reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On EOF reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On CONST reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr EQUAL_EQUAL binary_expr
+
+State 68:
+binary_expr -> binary_expr BAR_BAR . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 69
+
+State 69:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr BAR_BAR binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On NOT_EQUAL shift to state 54
+-- On MINUS shift to state 56
+-- On LESS_EQUAL shift to state 58
+-- On LESS shift to state 60
+-- On GREATER_EQUAL shift to state 62
+-- On GREATER shift to state 64
+-- On EQUAL_EQUAL shift to state 66
+-- On DIVIDE shift to state 52
+-- On AND_AND shift to state 70
+-- On THEN reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On TEL reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On NODE reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On EOF reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On CONST reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr BAR_BAR binary_expr
+
+State 70:
+binary_expr -> binary_expr AND_AND . binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On binary_expr shift to state 71
+
+State 71:
+binary_expr -> binary_expr . STAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . DIVIDE binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PERCENT binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . PLUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . MINUS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . LESS_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . GREATER_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . EQUAL_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . NOT_EQUAL binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . AND_AND binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr AND_AND binary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+binary_expr -> binary_expr . BAR_BAR binary_expr [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On STAR shift to state 46
+-- On PLUS shift to state 48
+-- On PERCENT shift to state 50
+-- On NOT_EQUAL shift to state 54
+-- On MINUS shift to state 56
+-- On LESS_EQUAL shift to state 58
+-- On LESS shift to state 60
+-- On GREATER_EQUAL shift to state 62
+-- On GREATER shift to state 64
+-- On EQUAL_EQUAL shift to state 66
+-- On DIVIDE shift to state 52
+-- On THEN reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On TEL reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On SEMICOLON reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On RPAREN reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On NODE reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On EOF reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On ELSE reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On CONST reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On COMMA reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On BAR_BAR reduce production binary_expr -> binary_expr AND_AND binary_expr
+-- On AND_AND reduce production binary_expr -> binary_expr AND_AND binary_expr
+
+State 72:
+if_expr -> IF expr . THEN expr ELSE expr [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On THEN shift to state 73
+
+State 73:
+if_expr -> IF expr THEN . expr ELSE expr [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 74
+-- On binary_expr shift to state 45
+
+State 74:
+if_expr -> IF expr THEN expr . ELSE expr [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On ELSE shift to state 75
+
+State 75:
+if_expr -> IF expr THEN expr ELSE . expr [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 76
+-- On binary_expr shift to state 45
+
+State 76:
+if_expr -> IF expr THEN expr ELSE expr . [ THEN TEL SEMICOLON RPAREN NODE EOF ELSE CONST COMMA ]
+-- On THEN reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On TEL reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On SEMICOLON reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On RPAREN reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On NODE reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On EOF reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On ELSE reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On CONST reduce production if_expr -> IF expr THEN expr ELSE expr
+-- On COMMA reduce production if_expr -> IF expr THEN expr ELSE expr
+
+State 77:
+primary_expr -> LPAREN expr . RPAREN [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On RPAREN shift to state 78
+
+State 78:
+primary_expr -> LPAREN expr RPAREN . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production primary_expr -> LPAREN expr RPAREN
+-- On TEL reduce production primary_expr -> LPAREN expr RPAREN
+-- On STAR reduce production primary_expr -> LPAREN expr RPAREN
+-- On SEMICOLON reduce production primary_expr -> LPAREN expr RPAREN
+-- On RPAREN reduce production primary_expr -> LPAREN expr RPAREN
+-- On PLUS reduce production primary_expr -> LPAREN expr RPAREN
+-- On PERCENT reduce production primary_expr -> LPAREN expr RPAREN
+-- On NOT_EQUAL reduce production primary_expr -> LPAREN expr RPAREN
+-- On NODE reduce production primary_expr -> LPAREN expr RPAREN
+-- On MINUS reduce production primary_expr -> LPAREN expr RPAREN
+-- On LESS_EQUAL reduce production primary_expr -> LPAREN expr RPAREN
+-- On LESS reduce production primary_expr -> LPAREN expr RPAREN
+-- On GREATER_EQUAL reduce production primary_expr -> LPAREN expr RPAREN
+-- On GREATER reduce production primary_expr -> LPAREN expr RPAREN
+-- On EQUAL_EQUAL reduce production primary_expr -> LPAREN expr RPAREN
+-- On EOF reduce production primary_expr -> LPAREN expr RPAREN
+-- On ELSE reduce production primary_expr -> LPAREN expr RPAREN
+-- On DIVIDE reduce production primary_expr -> LPAREN expr RPAREN
+-- On CONST reduce production primary_expr -> LPAREN expr RPAREN
+-- On COMMA reduce production primary_expr -> LPAREN expr RPAREN
+-- On BAR_BAR reduce production primary_expr -> LPAREN expr RPAREN
+-- On AND_AND reduce production primary_expr -> LPAREN expr RPAREN
+
+State 79:
+unary_expr -> MINUS unary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production unary_expr -> MINUS unary_expr
+-- On TEL reduce production unary_expr -> MINUS unary_expr
+-- On STAR reduce production unary_expr -> MINUS unary_expr
+-- On SEMICOLON reduce production unary_expr -> MINUS unary_expr
+-- On RPAREN reduce production unary_expr -> MINUS unary_expr
+-- On PLUS reduce production unary_expr -> MINUS unary_expr
+-- On PERCENT reduce production unary_expr -> MINUS unary_expr
+-- On NOT_EQUAL reduce production unary_expr -> MINUS unary_expr
+-- On NODE reduce production unary_expr -> MINUS unary_expr
+-- On MINUS reduce production unary_expr -> MINUS unary_expr
+-- On LESS_EQUAL reduce production unary_expr -> MINUS unary_expr
+-- On LESS reduce production unary_expr -> MINUS unary_expr
+-- On GREATER_EQUAL reduce production unary_expr -> MINUS unary_expr
+-- On GREATER reduce production unary_expr -> MINUS unary_expr
+-- On EQUAL_EQUAL reduce production unary_expr -> MINUS unary_expr
+-- On EOF reduce production unary_expr -> MINUS unary_expr
+-- On ELSE reduce production unary_expr -> MINUS unary_expr
+-- On DIVIDE reduce production unary_expr -> MINUS unary_expr
+-- On CONST reduce production unary_expr -> MINUS unary_expr
+-- On COMMA reduce production unary_expr -> MINUS unary_expr
+-- On BAR_BAR reduce production unary_expr -> MINUS unary_expr
+-- On AND_AND reduce production unary_expr -> MINUS unary_expr
+
+State 80:
+unary_expr -> NOT unary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production unary_expr -> NOT unary_expr
+-- On TEL reduce production unary_expr -> NOT unary_expr
+-- On STAR reduce production unary_expr -> NOT unary_expr
+-- On SEMICOLON reduce production unary_expr -> NOT unary_expr
+-- On RPAREN reduce production unary_expr -> NOT unary_expr
+-- On PLUS reduce production unary_expr -> NOT unary_expr
+-- On PERCENT reduce production unary_expr -> NOT unary_expr
+-- On NOT_EQUAL reduce production unary_expr -> NOT unary_expr
+-- On NODE reduce production unary_expr -> NOT unary_expr
+-- On MINUS reduce production unary_expr -> NOT unary_expr
+-- On LESS_EQUAL reduce production unary_expr -> NOT unary_expr
+-- On LESS reduce production unary_expr -> NOT unary_expr
+-- On GREATER_EQUAL reduce production unary_expr -> NOT unary_expr
+-- On GREATER reduce production unary_expr -> NOT unary_expr
+-- On EQUAL_EQUAL reduce production unary_expr -> NOT unary_expr
+-- On EOF reduce production unary_expr -> NOT unary_expr
+-- On ELSE reduce production unary_expr -> NOT unary_expr
+-- On DIVIDE reduce production unary_expr -> NOT unary_expr
+-- On CONST reduce production unary_expr -> NOT unary_expr
+-- On COMMA reduce production unary_expr -> NOT unary_expr
+-- On BAR_BAR reduce production unary_expr -> NOT unary_expr
+-- On AND_AND reduce production unary_expr -> NOT unary_expr
+
+State 81:
+unary_expr -> PLUS unary_expr . [ THEN TEL STAR SEMICOLON RPAREN PLUS PERCENT NOT_EQUAL NODE MINUS LESS_EQUAL LESS GREATER_EQUAL GREATER EQUAL_EQUAL EOF ELSE DIVIDE CONST COMMA BAR_BAR AND_AND ]
+-- On THEN reduce production unary_expr -> PLUS unary_expr
+-- On TEL reduce production unary_expr -> PLUS unary_expr
+-- On STAR reduce production unary_expr -> PLUS unary_expr
+-- On SEMICOLON reduce production unary_expr -> PLUS unary_expr
+-- On RPAREN reduce production unary_expr -> PLUS unary_expr
+-- On PLUS reduce production unary_expr -> PLUS unary_expr
+-- On PERCENT reduce production unary_expr -> PLUS unary_expr
+-- On NOT_EQUAL reduce production unary_expr -> PLUS unary_expr
+-- On NODE reduce production unary_expr -> PLUS unary_expr
+-- On MINUS reduce production unary_expr -> PLUS unary_expr
+-- On LESS_EQUAL reduce production unary_expr -> PLUS unary_expr
+-- On LESS reduce production unary_expr -> PLUS unary_expr
+-- On GREATER_EQUAL reduce production unary_expr -> PLUS unary_expr
+-- On GREATER reduce production unary_expr -> PLUS unary_expr
+-- On EQUAL_EQUAL reduce production unary_expr -> PLUS unary_expr
+-- On EOF reduce production unary_expr -> PLUS unary_expr
+-- On ELSE reduce production unary_expr -> PLUS unary_expr
+-- On DIVIDE reduce production unary_expr -> PLUS unary_expr
+-- On CONST reduce production unary_expr -> PLUS unary_expr
+-- On COMMA reduce production unary_expr -> PLUS unary_expr
+-- On BAR_BAR reduce production unary_expr -> PLUS unary_expr
+-- On AND_AND reduce production unary_expr -> PLUS unary_expr
+
+State 82:
+eqn -> GUARANTEE IDENT COLON expr . [ TEL SEMICOLON ]
+-- On TEL reduce production eqn -> GUARANTEE IDENT COLON expr
+-- On SEMICOLON reduce production eqn -> GUARANTEE IDENT COLON expr
+
+State 83:
+eqn -> ASSUME . IDENT COLON expr [ TEL SEMICOLON ]
+-- On IDENT shift to state 84
+
+State 84:
+eqn -> ASSUME IDENT . COLON expr [ TEL SEMICOLON ]
+-- On COLON shift to state 85
+
+State 85:
+eqn -> ASSUME IDENT COLON . expr [ TEL SEMICOLON ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 86
+-- On binary_expr shift to state 45
+
+State 86:
+eqn -> ASSUME IDENT COLON expr . [ TEL SEMICOLON ]
+-- On TEL reduce production eqn -> ASSUME IDENT COLON expr
+-- On SEMICOLON reduce production eqn -> ASSUME IDENT COLON expr
+
+State 87:
+dbody -> LET separated_nonempty_list(SEMICOLON,ext(eqn)) . TEL [ NODE EOF CONST ]
+-- On TEL shift to state 88
+
+State 88:
+dbody -> LET separated_nonempty_list(SEMICOLON,ext(eqn)) TEL . [ NODE EOF CONST ]
+-- On NODE reduce production dbody -> LET separated_nonempty_list(SEMICOLON,ext(eqn)) TEL
+-- On EOF reduce production dbody -> LET separated_nonempty_list(SEMICOLON,ext(eqn)) TEL
+-- On CONST reduce production dbody -> LET separated_nonempty_list(SEMICOLON,ext(eqn)) TEL
+
+State 89:
+eqn -> lvalue . EQUAL expr [ TEL SEMICOLON ]
+-- On EQUAL shift to state 90
+
+State 90:
+eqn -> lvalue EQUAL . expr [ TEL SEMICOLON ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 91
+-- On binary_expr shift to state 45
+
+State 91:
+eqn -> lvalue EQUAL expr . [ TEL SEMICOLON ]
+-- On TEL reduce production eqn -> lvalue EQUAL expr
+-- On SEMICOLON reduce production eqn -> lvalue EQUAL expr
+
+State 92:
+separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn . [ TEL ]
+separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn . SEMICOLON separated_nonempty_list(SEMICOLON,ext(eqn)) [ TEL ]
+-- On SEMICOLON shift to state 93
+-- On TEL reduce production separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn
+
+State 93:
+separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn SEMICOLON . separated_nonempty_list(SEMICOLON,ext(eqn)) [ TEL ]
+-- On IDENT shift to state 22
+-- On GUARANTEE shift to state 23
+-- On ASSUME shift to state 83
+-- On separated_nonempty_list(SEMICOLON,ext(eqn)) shift to state 94
+-- On lvalue shift to state 89
+-- On eqn shift to state 92
+
+State 94:
+separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn SEMICOLON separated_nonempty_list(SEMICOLON,ext(eqn)) . [ TEL ]
+-- On TEL reduce production separated_nonempty_list(SEMICOLON,ext(eqn)) -> eqn SEMICOLON separated_nonempty_list(SEMICOLON,ext(eqn))
+
+State 95:
+dbody -> eqn . SEMICOLON [ NODE EOF CONST ]
+-- On SEMICOLON shift to state 96
+
+State 96:
+dbody -> eqn SEMICOLON . [ NODE EOF CONST ]
+-- On NODE reduce production dbody -> eqn SEMICOLON
+-- On EOF reduce production dbody -> eqn SEMICOLON
+-- On CONST reduce production dbody -> eqn SEMICOLON
+
+State 97:
+node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody . [ NODE EOF CONST ]
+-- On NODE reduce production node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody
+-- On EOF reduce production node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody
+-- On CONST reduce production node_decl -> NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody
+
+State 98:
+separated_nonempty_list(SEMICOLON,var) -> var . [ RPAREN ]
+separated_nonempty_list(SEMICOLON,var) -> var . SEMICOLON separated_nonempty_list(SEMICOLON,var) [ RPAREN ]
+-- On SEMICOLON shift to state 99
+-- On RPAREN reduce production separated_nonempty_list(SEMICOLON,var) -> var
+
+State 99:
+separated_nonempty_list(SEMICOLON,var) -> var SEMICOLON . separated_nonempty_list(SEMICOLON,var) [ RPAREN ]
+-- On IDENT shift to state 4
+-- On var shift to state 98
+-- On separated_nonempty_list(SEMICOLON,var) shift to state 100
+
+State 100:
+separated_nonempty_list(SEMICOLON,var) -> var SEMICOLON separated_nonempty_list(SEMICOLON,var) . [ RPAREN ]
+-- On RPAREN reduce production separated_nonempty_list(SEMICOLON,var) -> var SEMICOLON separated_nonempty_list(SEMICOLON,var)
+
+State 101:
+loption(separated_nonempty_list(SEMICOLON,var)) -> separated_nonempty_list(SEMICOLON,var) . [ RPAREN ]
+-- On RPAREN reduce production loption(separated_nonempty_list(SEMICOLON,var)) -> separated_nonempty_list(SEMICOLON,var)
+
+State 102:
+vars -> loption(separated_nonempty_list(SEMICOLON,var)) . [ RPAREN ]
+-- On RPAREN reduce production vars -> loption(separated_nonempty_list(SEMICOLON,var))
+
+State 103:
+const_decl -> CONST . IDENT COLON typ EQUAL expr [ NODE EOF CONST ]
+-- On IDENT shift to state 104
+
+State 104:
+const_decl -> CONST IDENT . COLON typ EQUAL expr [ NODE EOF CONST ]
+-- On COLON shift to state 105
+
+State 105:
+const_decl -> CONST IDENT COLON . typ EQUAL expr [ NODE EOF CONST ]
+-- On REAL shift to state 6
+-- On INT shift to state 7
+-- On BOOL shift to state 8
+-- On typ shift to state 106
+
+State 106:
+const_decl -> CONST IDENT COLON typ . EQUAL expr [ NODE EOF CONST ]
+-- On EQUAL shift to state 107
+
+State 107:
+const_decl -> CONST IDENT COLON typ EQUAL . expr [ NODE EOF CONST ]
+-- On TRUE shift to state 26
+-- On PLUS shift to state 27
+-- On NOT shift to state 28
+-- On MINUS shift to state 29
+-- On LPAREN shift to state 30
+-- On INTVAL shift to state 31
+-- On IF shift to state 32
+-- On IDENT shift to state 33
+-- On FALSE shift to state 35
+-- On unary_expr shift to state 36
+-- On primary_expr shift to state 38
+-- On if_expr shift to state 41
+-- On expr shift to state 108
+-- On binary_expr shift to state 45
+
+State 108:
+const_decl -> CONST IDENT COLON typ EQUAL expr . [ NODE EOF CONST ]
+-- On NODE reduce production const_decl -> CONST IDENT COLON typ EQUAL expr
+-- On EOF reduce production const_decl -> CONST IDENT COLON typ EQUAL expr
+-- On CONST reduce production const_decl -> CONST IDENT COLON typ EQUAL expr
+
+State 109:
+list(toplevel) -> toplevel . list(toplevel) [ EOF ]
+-- On NODE shift to state 1
+-- On CONST shift to state 103
+-- On toplevel shift to state 109
+-- On node_decl shift to state 110
+-- On list(toplevel) shift to state 111
+-- On const_decl shift to state 112
+-- On EOF reduce production list(toplevel) ->
+
+State 110:
+toplevel -> node_decl . [ NODE EOF CONST ]
+-- On NODE reduce production toplevel -> node_decl
+-- On EOF reduce production toplevel -> node_decl
+-- On CONST reduce production toplevel -> node_decl
+
+State 111:
+list(toplevel) -> toplevel list(toplevel) . [ EOF ]
+-- On EOF reduce production list(toplevel) -> toplevel list(toplevel)
+
+State 112:
+toplevel -> const_decl . [ NODE EOF CONST ]
+-- On NODE reduce production toplevel -> const_decl
+-- On EOF reduce production toplevel -> const_decl
+-- On CONST reduce production toplevel -> const_decl
+
+State 113:
+file -> list(toplevel) . EOF [ # ]
+-- On EOF shift to state 114
+
+State 114:
+file -> list(toplevel) EOF . [ # ]
+-- On # reduce production file -> list(toplevel) EOF
+
+State 115:
+file' -> file . [ # ]
+-- On # accept file
+
diff --git a/frontend/parser.conflicts b/frontend/parser.conflicts
new file mode 100644
index 0000000..296156a
--- /dev/null
+++ b/frontend/parser.conflicts
@@ -0,0 +1,32 @@
+
+** Conflict (shift/reduce) in state 17.
+** Token involved: IDENT
+** This state is reached from file after reading:
+
+NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN VAR var SEMICOLON
+
+** The derivations that appear below have the following common factor:
+** (The question mark symbol (?) represents the spot where the derivations begin to differ.)
+
+file
+list(toplevel) EOF
+toplevel list(toplevel)
+node_decl
+(?)
+
+** In state 17, looking ahead at IDENT, reducing production
+** nonempty_list(terminated(var,SEMICOLON)) -> var SEMICOLON
+** is permitted because of the following sub-derivation:
+
+NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody // lookahead token appears because dbody can begin with IDENT
+ VAR nonempty_list(terminated(var,SEMICOLON)) // lookahead token is inherited
+ var SEMICOLON .
+
+** In state 17, looking ahead at IDENT, shifting is permitted
+** because of the following sub-derivation:
+
+NODE IDENT LPAREN vars RPAREN RETURNS vars RPAREN var_decl dbody
+ VAR nonempty_list(terminated(var,SEMICOLON))
+ var SEMICOLON nonempty_list(terminated(var,SEMICOLON))
+ var SEMICOLON
+ . IDENT COLON typ
diff --git a/frontend/parser.mly b/frontend/parser.mly
new file mode 100644
index 0000000..9db1bd5
--- /dev/null
+++ b/frontend/parser.mly
@@ -0,0 +1,221 @@
+%{
+open Ast
+%}
+
+/* tokens */
+/**********/
+
+%token BOOL
+%token INT
+%token REAL
+%token PROBE
+%token TRUE
+%token THEN
+%token FALSE
+%token IF
+%token ELSE
+%token NOT
+%token AND
+%token OR
+%token MOD
+%token CONST
+%token NODE
+%token RETURNS
+%token VAR
+%token LET
+%token TEL
+%token PRE
+%token ASSUME
+%token GUARANTEE
+
+%token LPAREN
+%token RPAREN
+%token LCURLY
+%token RCURLY
+%token STAR
+%token PLUS
+%token MINUS
+%token EXCLAIM
+%token DIVIDE
+%token PERCENT
+%token LESS
+%token GREATER
+%token LESS_EQUAL
+%token GREATER_EQUAL
+%token EQUAL_EQUAL
+%token DIFF
+%token AND_AND
+%token BAR_BAR
+%token SEMICOLON
+%token COLON
+%token COMMA
+%token EQUAL
+%token ARROW
+
+%token <string> IDENT
+%token <string> INTVAL
+
+%token EOF
+
+/* priorities of binary operators (lowest to highest) */
+%left ARROW
+%left OR
+%left AND
+%left EQUAL DIFF
+%left LESS GREATER LESS_EQUAL GREATER_EQUAL
+%left PLUS MINUS
+%left STAR DIVIDE MOD
+
+
+/* entry-points */
+/****************/
+
+%start<Ast.toplevel list> file
+
+
+%%
+
+
+/* toplevel */
+/************/
+
+file: t=list(toplevel) EOF { t }
+
+toplevel:
+| d=ext(const_decl) { AST_const_decl d }
+| d=ext(node_decl) { AST_node_decl d }
+
+
+/* expressions */
+/***************/
+
+primary_expr:
+| LPAREN e=expr RPAREN { e }
+| e=ext(IDENT) { AST_identifier e }
+| e=ext(INTVAL) { AST_int_const e }
+| TRUE { AST_bool_const true }
+| FALSE { AST_bool_const false }
+| e=ext(IDENT) LPAREN l=separated_list(COMMA,ext(expr)) RPAREN
+ { AST_instance (e, l) }
+
+
+unary_expr:
+| e=primary_expr { e }
+| o=unary_op e=ext(unary_expr) { AST_unary (o, e) }
+
+%inline unary_op:
+| PLUS { AST_UPLUS }
+| MINUS { AST_UMINUS }
+| NOT { AST_NOT }
+| PRE { AST_PRE }
+
+
+binary_expr:
+| e=unary_expr { e }
+| e=ext(binary_expr) o=binary_op f=ext(binary_expr) { AST_binary (o, e, f) }
+
+%inline binary_op:
+| STAR { AST_MUL }
+| DIVIDE { AST_DIV }
+| MOD { AST_MOD }
+| PLUS { AST_PLUS }
+| MINUS { AST_MINUS }
+| LESS { AST_LT }
+| GREATER { AST_GT }
+| LESS_EQUAL { AST_LE }
+| GREATER_EQUAL { AST_GE }
+| EQUAL { AST_EQ}
+| DIFF { AST_NE }
+| AND { AST_AND }
+| OR { AST_OR }
+| ARROW { AST_ARROW }
+
+if_expr:
+| IF c=ext(expr) THEN t=ext(expr) ELSE e=ext(expr)
+ { AST_if(c, t, e) }
+| e=binary_expr { e }
+
+expr:
+| e=if_expr { e }
+
+lvalue:
+| i=IDENT { i }
+
+
+/* equations */
+/****************/
+
+eqn:
+| i=ext(lvalue) EQUAL e=ext(expr)
+ { AST_assign(i, e) }
+| ASSUME i=ext(IDENT) COLON e=ext(expr)
+ { AST_assume(i, e) }
+| GUARANTEE i=ext(IDENT) COLON e=ext(expr)
+ { AST_guarantee(i, e) }
+
+typ:
+| INT { AST_TINT }
+| BOOL { AST_TBOOL }
+| REAL { AST_TREAL }
+
+dbody:
+| e=ext(eqn) SEMICOLON
+ { [e] }
+| LET l=nonempty_list(terminated(ext(eqn), SEMICOLON)) TEL
+ { l }
+
+/* declarations */
+
+var:
+| p=boption(PROBE) i=ext(IDENT)
+ { (p, i) }
+
+vari:
+| vn=separated_list(COMMA, var) COLON t=typ
+ { List.map (fun (p, i) -> (p, i, t)) vn }
+
+vars:
+| v=separated_list(SEMICOLON, vari)
+ { List.flatten v }
+
+const_decl:
+| CONST i=ext(IDENT) COLON t=typ EQUAL e=ext(expr) SEMICOLON
+ { (i, t, e) }
+
+var_decl:
+| VAR l=nonempty_list(terminated(vari, SEMICOLON))
+ { List.flatten l }
+
+node_decl:
+| NODE id=IDENT
+ LPAREN v=vars RPAREN
+ RETURNS LPAREN rv=vars RPAREN
+ e = dbody
+ { { name = id;
+ args = v;
+ ret = rv;
+ var = [];
+ body = e;
+ } }
+| NODE id=IDENT
+ LPAREN v=vars RPAREN
+ RETURNS LPAREN rv=vars RPAREN
+ lv=var_decl
+ LET b=nonempty_list(terminated(ext(eqn), SEMICOLON)) TEL
+ { { name = id;
+ args = v;
+ ret = rv;
+ var = lv;
+ body = b;
+ } }
+
+
+/* utilities */
+/*************/
+
+/* adds extent information to rule */
+%inline ext(X):
+| x=X { x, ($startpos, $endpos) }
+
+
+%%
diff --git a/libs/mapext.ml b/libs/mapext.ml
new file mode 100644
index 0000000..51f41ee
--- /dev/null
+++ b/libs/mapext.ml
@@ -0,0 +1,741 @@
+(*
+ Cours "Sémantique et Application à la Vérification de programmes"
+
+ Antoine Miné 2014
+ Ecole normale supérieure, Paris, France / CNRS / INRIA
+*)
+
+(*
+ This file is derived from the map.ml file from the OCaml distribution.
+ Changes are marked with the [AM] symbol.
+ Based on rev. 10468 2010-05-25 13:29:43Z
+
+ Original copyright follows.
+*)
+
+(***********************************************************************)
+(* *)
+(* Objective Caml *)
+(* *)
+(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
+(* *)
+(* Copyright 1996 Institut National de Recherche en Informatique et *)
+(* en Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU Library General Public License, with *)
+(* the special exception on linking described in file ../LICENSE. *)
+(* *)
+(***********************************************************************)
+
+module type OrderedType =
+ sig
+ type t
+ val compare: t -> t -> int
+ end
+
+module type S =
+ sig
+ type key
+ type +'a t
+ val empty: 'a t
+ val is_empty: 'a t -> bool
+ val mem: key -> 'a t -> bool
+ val add: key -> 'a -> 'a t -> 'a t
+ val singleton: key -> 'a -> 'a t
+ val remove: key -> 'a t -> 'a t
+ val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
+ val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
+ val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val iter: (key -> 'a -> unit) -> 'a t -> unit
+ val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
+ val for_all: (key -> 'a -> bool) -> 'a t -> bool
+ val exists: (key -> 'a -> bool) -> 'a t -> bool
+ val filter: (key -> 'a -> bool) -> 'a t -> 'a t
+ val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
+ val cardinal: 'a t -> int
+ val bindings: 'a t -> (key * 'a) list
+ val min_binding: 'a t -> (key * 'a)
+ val max_binding: 'a t -> (key * 'a)
+ val choose: 'a t -> (key * 'a)
+ val split: key -> 'a t -> 'a t * 'a option * 'a t
+ val find: key -> 'a t -> 'a
+ val map: ('a -> 'b) -> 'a t -> 'b t
+ val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
+
+
+ (* [AM] additions by Antoine Mine' *)
+
+ val of_list: (key * 'a) list -> 'a t
+
+ val map2: (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ val iter2: (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ val fold2: (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ val for_all2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ val exists2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+
+ val map2z: (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ val iter2z: (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ val fold2z: (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ val for_all2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val exists2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+
+ val map2o: (key -> 'a -> 'c) -> (key -> 'b -> 'c) -> (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ val iter2o: (key -> 'a -> unit) -> (key -> 'b -> unit) -> (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ val fold2o: (key -> 'a -> 'c -> 'c) -> (key -> 'b -> 'c -> 'c) -> (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ val for_all2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ val exists2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+
+ val map2zo: (key -> 'a -> 'a) -> (key -> 'a -> 'a) -> (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ val iter2zo: (key -> 'a -> unit) -> (key -> 'a -> unit) -> (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ val fold2zo: (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ val for_all2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ val exists2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+
+ val map_slice: (key -> 'a -> 'a) -> 'a t -> key -> key -> 'a t
+ val iter_slice: (key -> 'a -> unit) -> 'a t -> key -> key -> unit
+ val fold_slice: (key -> 'a -> 'b -> 'b) -> 'a t -> key -> key -> 'b -> 'b
+ val for_all_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ val exists_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+
+ val key_equal: 'a t -> 'a t -> bool
+ val key_subset: 'a t -> 'a t -> bool
+
+ val find_greater: key -> 'a t -> key * 'a
+ val find_less: key -> 'a t -> key * 'a
+ val find_greater_equal: key -> 'a t -> key * 'a
+ val find_less_equal: key -> 'a t -> key * 'a
+
+ end
+
+module Make(Ord: OrderedType) = (struct
+
+ type key = Ord.t
+
+ type 'a t =
+ Empty
+ | Node of 'a t * key * 'a * 'a t * int
+
+ let height = function
+ Empty -> 0
+ | Node(_,_,_,_,h) -> h
+
+ let create l x d r =
+ let hl = height l and hr = height r in
+ Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ let singleton x d = Node(Empty, x, d, Empty, 1)
+
+ let bal l x d r =
+ let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
+ let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
+ if hl > hr + 2 then begin
+ match l with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(ll, lv, ld, lr, _) ->
+ if height ll >= height lr then
+ create ll lv ld (create lr x d r)
+ else begin
+ match lr with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(lrl, lrv, lrd, lrr, _)->
+ create (create ll lv ld lrl) lrv lrd (create lrr x d r)
+ end
+ end else if hr > hl + 2 then begin
+ match r with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(rl, rv, rd, rr, _) ->
+ if height rr >= height rl then
+ create (create l x d rl) rv rd rr
+ else begin
+ match rl with
+ Empty -> invalid_arg "Mapext.bal"
+ | Node(rll, rlv, rld, rlr, _) ->
+ create (create l x d rll) rlv rld (create rlr rv rd rr)
+ end
+ end else
+ Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ let empty = Empty
+
+ let is_empty = function Empty -> true | _ -> false
+
+ let rec add x data = function
+ Empty ->
+ Node(Empty, x, data, Empty, 1)
+ | Node(l, v, d, r, h) ->
+ let c = Ord.compare x v in
+ if c = 0 then
+ Node(l, x, data, r, h)
+ else if c < 0 then
+ bal (add x data l) v d r
+ else
+ bal l v d (add x data r)
+
+ let rec find x = function
+ Empty ->
+ raise Not_found
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ if c = 0 then d
+ else find x (if c < 0 then l else r)
+
+ let rec mem x = function
+ Empty ->
+ false
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ c = 0 || mem x (if c < 0 then l else r)
+
+ let rec min_binding = function
+ Empty -> raise Not_found
+ | Node(Empty, x, d, r, _) -> (x, d)
+ | Node(l, x, d, r, _) -> min_binding l
+
+ let rec max_binding = function
+ Empty -> raise Not_found
+ | Node(l, x, d, Empty, _) -> (x, d)
+ | Node(l, x, d, r, _) -> max_binding r
+
+ let rec remove_min_binding = function
+ Empty -> invalid_arg "Mapext.remove_min_elt"
+ | Node(Empty, x, d, r, _) -> r
+ | Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
+
+ let merge t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (_, _) ->
+ let (x, d) = min_binding t2 in
+ bal t1 x d (remove_min_binding t2)
+
+ let rec remove x = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let c = Ord.compare x v in
+ if c = 0 then
+ merge l r
+ else if c < 0 then
+ bal (remove x l) v d r
+ else
+ bal l v d (remove x r)
+
+ let rec iter f = function
+ Empty -> ()
+ | Node(l, v, d, r, _) ->
+ iter f l; f v d; iter f r
+
+ let rec map f = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let l' = map f l in
+ let d' = f d in
+ let r' = map f r in
+ Node(l', v, d', r', h)
+
+ let rec mapi f = function
+ Empty ->
+ Empty
+ | Node(l, v, d, r, h) ->
+ let l' = mapi f l in
+ let d' = f v d in
+ let r' = mapi f r in
+ Node(l', v, d', r', h)
+
+ let rec fold f m accu =
+ match m with
+ Empty -> accu
+ | Node(l, v, d, r, _) ->
+ fold f r (f v d (fold f l accu))
+
+ (* [AM] changed to call p in the key order *)
+ let rec for_all p = function
+ Empty -> true
+ | Node(l, v, d, r, _) -> for_all p l && p v d && for_all p r
+
+ (* [AM] changed to call p in the key order *)
+ let rec exists p = function
+ Empty -> false
+ | Node(l, v, d, r, _) -> exists p l || p v d || exists p r
+
+ (* [AM] changed to call p in the key order *)
+ let filter p s =
+ fold (fun k d a -> if p k d then add k d a else a) s Empty
+
+ let partition p s =
+ let rec part (t, f as accu) = function
+ | Empty -> accu
+ | Node(l, v, d, r, _) ->
+ part (part (if p v d then (add v d t, f) else (t, add v d f)) l) r in
+ part (Empty, Empty) s
+
+ (* Same as create and bal, but no assumptions are made on the
+ relative heights of l and r. *)
+
+ let rec join l v d r =
+ match (l, r) with
+ (Empty, _) -> add v d r
+ | (_, Empty) -> add v d l
+ | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
+ if lh > rh + 2 then bal ll lv ld (join lr v d r) else
+ if rh > lh + 2 then bal (join l v d rl) rv rd rr else
+ create l v d r
+
+ (* Merge two trees l and r into one.
+ All elements of l must precede the elements of r.
+ No assumption on the heights of l and r. *)
+
+ let concat t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (_, _) ->
+ let (x, d) = min_binding t2 in
+ join t1 x d (remove_min_binding t2)
+
+ let concat_or_join t1 v d t2 =
+ match d with
+ | Some d -> join t1 v d t2
+ | None -> concat t1 t2
+
+ let rec split x = function
+ Empty ->
+ (Empty, None, Empty)
+ | Node(l, v, d, r, _) ->
+ let c = Ord.compare x v in
+ if c = 0 then (l, Some d, r)
+ else if c < 0 then
+ let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
+ else
+ let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
+
+ let rec merge f s1 s2 =
+ match (s1, s2) with
+ (Empty, Empty) -> Empty
+ | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
+ let (l2, d2, r2) = split v1 s2 in
+ concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
+ | (_, Node (l2, v2, d2, r2, h2)) ->
+ let (l1, d1, r1) = split v2 s1 in
+ concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
+ | _ ->
+ assert false
+
+ type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
+
+ let rec cons_enum m e =
+ match m with
+ Empty -> e
+ | Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
+
+ let compare cmp m1 m2 =
+ let rec compare_aux e1 e2 =
+ match (e1, e2) with
+ (End, End) -> 0
+ | (End, _) -> -1
+ | (_, End) -> 1
+ | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
+ let c = Ord.compare v1 v2 in
+ if c <> 0 then c else
+ let c = cmp d1 d2 in
+ if c <> 0 then c else
+ compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
+ in compare_aux (cons_enum m1 End) (cons_enum m2 End)
+
+ let equal cmp m1 m2 =
+ let rec equal_aux e1 e2 =
+ match (e1, e2) with
+ (End, End) -> true
+ | (End, _) -> false
+ | (_, End) -> false
+ | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
+ Ord.compare v1 v2 = 0 && cmp d1 d2 &&
+ equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
+ in equal_aux (cons_enum m1 End) (cons_enum m2 End)
+
+ let rec cardinal = function
+ Empty -> 0
+ | Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
+
+ let rec bindings_aux accu = function
+ Empty -> accu
+ | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
+
+ let bindings s =
+ bindings_aux [] s
+
+ let choose = min_binding
+
+
+
+ (* [AM] additions by Antoine Mine' *)
+ (* ******************************* *)
+
+
+ let of_list l =
+ List.fold_left (fun acc (k,x) -> add k x acc) empty l
+
+
+ (* similar to split, but returns unbalanced trees *)
+ let rec cut k = function
+ Empty -> Empty,None,Empty
+ | Node (l1,k1,d1,r1,h1) ->
+ let c = Ord.compare k k1 in
+ if c < 0 then
+ let l2,d2,r2 = cut k l1 in (l2,d2,Node (r2,k1,d1,r1,h1))
+ else if c > 0 then
+ let l2,d2,r2 = cut k r1 in (Node (l1,k1,d1,l2,h1),d2,r2)
+ else (l1,Some d1,r1)
+
+
+ (* binary operations that fail on maps with different keys *)
+
+ (* functions are called in increasing key order *)
+
+ let rec map2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ Node (map2 f l1 l2, k, f k d1 d2, map2 f r1 r2, h1)
+ | _, None, _ -> invalid_arg "Mapext.map2"
+
+ let rec iter2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 -> iter2 f l1 l2; f k d1 d2; iter2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.iter2"
+
+ let rec fold2 f m1 m2 acc =
+ match m1 with
+ | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ fold2 f r1 r2 (f k d1 d2 (fold2 f l1 l2 acc))
+ | _, None, _ -> invalid_arg "Mapext.fold2"
+
+ let rec for_all2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ for_all2 f l1 l2 && f k d1 d2 && for_all2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.for_all2"
+
+ let rec exists2 f m1 m2 =
+ match m1 with
+ | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ exists2 f l1 l2 || f k d1 d2 || exists2 f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.exists2"
+
+
+ (* as above, but ignore physically equal subtrees
+ - for map, assumes: f k d d = d
+ - for iter, assumes: f k d d has no effect
+ - for fold, assumes: k f d d acc = acc
+ - for for_all, assumes: f k d d = true
+ - for exists, assumes: f k d d = false
+ *)
+
+ let rec map2z f m1 m2 =
+ if m1 == m2 then m1 else
+ match m1 with
+ | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ let d = if d1 == d2 then d1 else f k d1 d2 in
+ Node (map2z f l1 l2, k, d, map2z f r1 r2, h1)
+ | _, None, _ -> invalid_arg "Mapext.map2z"
+
+ let rec iter2z f m1 m2 =
+ if m1 == m2 then () else
+ match m1 with
+ | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ iter2z f l1 l2; (if d1 != d2 then f k d1 d2); iter2z f r1 r2
+ | _, None, _ -> invalid_arg "Mapext.iter2z"
+
+ let rec fold2z f m1 m2 acc =
+ if m1 == m2 then acc else
+ match m1 with
+ | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ let acc = fold2z f l1 l2 acc in
+ let acc = if d1 == d2 then acc else f k d1 d2 acc in
+ fold2z f r1 r2 acc
+ | _, None, _ -> invalid_arg "Mapext.fold2z"
+
+ let rec for_all2z f m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ (for_all2z f l1 l2) &&
+ (d1 == d2 || f k d1 d2) &&
+ (for_all2z f r1 r2)
+ | _, None, _ -> invalid_arg "Mapext.for_all2z"
+ )
+
+ let rec exists2z f m1 m2 =
+ (m1 != m2) &&
+ (match m1 with
+ | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2z"
+ | Node (l1,k,d1,r1,h1) ->
+ match cut k m2 with
+ | l2, Some d2, r2 ->
+ (exists2z f l1 l2) ||
+ (d1 != d2 && f k d1 d2) ||
+ (exists2z f r1 r2)
+ | _, None, _ -> invalid_arg "Mapext.exists2z"
+ )
+
+
+ (* as above, but allow maps with different keys *)
+
+ let rec map2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> mapi f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let l = map2o f1 f2 f l1 l2 in
+ let d = match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2 in
+ let r = map2o f1 f2 f r1 r2 in
+ join l k d r
+
+ let rec iter2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> iter f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ iter2o f1 f2 f l1 l2;
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2);
+ iter2o f1 f2 f r1 r2
+
+ let rec fold2o f1 f2 f m1 m2 acc =
+ match m1 with
+ | Empty -> fold f2 m2 acc
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let acc = fold2o f1 f2 f l1 l2 acc in
+ let acc = match d2 with
+ | None -> f1 k d1 acc | Some d2 -> f k d1 d2 acc
+ in
+ fold2o f1 f2 f r1 r2 acc
+
+ let rec for_all2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> for_all f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (for_all2o f1 f2 f l1 l2) &&
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) &&
+ (for_all2o f1 f2 f r1 r2)
+
+ let rec exists2o f1 f2 f m1 m2 =
+ match m1 with
+ | Empty -> exists f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (exists2o f1 f2 f l1 l2) ||
+ (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) ||
+ (exists2o f1 f2 f r1 r2)
+
+
+ (* all together now *)
+
+ let rec map2zo f1 f2 f m1 m2 =
+ if m1 == m2 then m1 else
+ match m1 with
+ | Empty -> mapi f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let l = map2zo f1 f2 f l1 l2 in
+ let d = match d2 with
+ | None -> f1 k d1
+ | Some d2 -> if d1 == d2 then d1 else f k d1 d2
+ in
+ let r = map2zo f1 f2 f r1 r2 in
+ join l k d r
+
+ let rec iter2zo f1 f2 f m1 m2 =
+ if m1 == m2 then () else
+ match m1 with
+ | Empty -> iter f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ iter2zo f1 f2 f l1 l2;
+ (match d2 with
+ | None -> f1 k d1
+ | Some d2 -> if d1 != d2 then f k d1 d2);
+ iter2zo f1 f2 f r1 r2
+
+ let rec fold2zo f1 f2 f m1 m2 acc =
+ if m1 == m2 then acc else
+ match m1 with
+ | Empty -> fold f2 m2 acc
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ let acc = fold2zo f1 f2 f l1 l2 acc in
+ let acc = match d2 with
+ | None -> f1 k d1 acc
+ | Some d2 -> if d1 == d2 then acc else f k d1 d2 acc
+ in
+ fold2zo f1 f2 f r1 r2 acc
+
+ let rec for_all2zo f1 f2 f m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> for_all f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (for_all2zo f1 f2 f l1 l2) &&
+ (match d2 with None -> f1 k d1 | Some d2 -> d1 == d2 || f k d1 d2) &&
+ (for_all2zo f1 f2 f r1 r2)
+ )
+
+ let rec exists2zo f1 f2 f m1 m2 =
+ (m1 != m2) &&
+ (match m1 with
+ | Empty -> exists f2 m2
+ | Node (l1,k,d1,r1,h1) ->
+ let l2, d2, r2 = cut k m2 in
+ (exists2zo f1 f2 f l1 l2) ||
+ (match d2 with None -> f1 k d1 | Some d2 -> d1 != d2 && f k d1 d2) ||
+ (exists2zo f1 f2 f r1 r2)
+ )
+
+
+ (* iterators limited to keys between two bounds *)
+
+ let rec map_slice f m lo hi =
+ match m with
+ | Empty -> Empty
+ | Node (l,k,d,r,h) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ let l = if c1 > 0 then map_slice f l lo k else l in
+ let d = if c1 >= 0 && c2 <= 0 then f k d else d in
+ let r = if c2 < 0 then map_slice f r k hi else r in
+ Node (l,k,d,r,h)
+
+ let rec iter_slice f m lo hi =
+ match m with
+ | Empty -> ()
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ if c1 > 0 then iter_slice f l lo k;
+ if c1 >= 0 && c2 <= 0 then f k d;
+ if c2 < 0 then iter_slice f r k hi
+
+ let rec fold_slice f m lo hi acc =
+ match m with
+ | Empty -> acc
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ let acc = if c1 > 0 then fold_slice f l lo k acc else acc in
+ let acc = if c1 >= 0 && c2 <= 0 then f k d acc else acc in
+ if c2 < 0 then fold_slice f r k hi acc else acc
+
+ let rec for_all_slice f m lo hi =
+ match m with
+ | Empty -> true
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ (c1 <= 0 || for_all_slice f l lo k) &&
+ (c1 < 0 || c2 > 0 || f k d) &&
+ (c2 >= 0 || for_all_slice f r k hi)
+
+ let rec exists_slice f m lo hi =
+ match m with
+ | Empty -> false
+ | Node (l,k,d,r,_) ->
+ let c1, c2 = Ord.compare k lo, Ord.compare k hi in
+ (c1 > 0 && exists_slice f l lo k) ||
+ (c1 >= 0 && c2 <= 0 && f k d) ||
+ (c2 < 0 && exists_slice f r k hi)
+
+
+ (* key set comparison *)
+
+ let rec key_equal m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> m2 = Empty
+ | Node (l1, k, _, r1, _) ->
+ match cut k m2 with
+ | _, None, _ -> false
+ | l2, Some _, r2 -> key_equal l1 l2 && key_equal r1 r2
+ )
+
+ let rec key_subset m1 m2 =
+ (m1 == m2) ||
+ (match m1 with
+ | Empty -> true
+ | Node (l1, k, _, r1, _) ->
+ match cut k m2 with
+ | _, None, _ -> false
+ | l2, Some _, r2 -> key_subset l1 l2 && key_subset r1 r2
+ )
+
+
+ (* nagivation *)
+
+ let find_greater_equal k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c = 0 then kk, d else
+ if c > 0 then aux r found else
+ aux l (Some (kk, d))
+ in
+ aux m None
+
+ let find_greater k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c >= 0 then aux r found else
+ aux l (Some (kk, d))
+ in
+ aux m None
+
+ let find_less_equal k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c = 0 then kk, d else
+ if c < 0 then aux l found else
+ aux r (Some (kk, d))
+ in
+ aux m None
+
+ let find_less k m =
+ let rec aux m found = match m with
+ | Empty -> (match found with None -> raise Not_found | Some x -> x)
+ | Node (l, kk, d, r, _) ->
+ let c = Ord.compare k kk in
+ if c <= 0 then aux l found else
+ aux r (Some (kk, d))
+ in
+ aux m None
+
+
+end: S with type key = Ord.t)
diff --git a/libs/mapext.mli b/libs/mapext.mli
new file mode 100644
index 0000000..abee2c0
--- /dev/null
+++ b/libs/mapext.mli
@@ -0,0 +1,473 @@
+(*
+ Cours "Sémantique et Application à la Vérification de programmes"
+
+ Antoine Miné 2014
+ Ecole normale supérieure, Paris, France / CNRS / INRIA
+*)
+
+(*
+ This file is derived from the mapi.ml file from the OCaml distribution.
+ Changes are marked with the [AM] symbol.
+ Based on rev. 10632 2010-07-24 14:16:58Z.
+
+ Original copyright follows.
+*)
+
+
+(***********************************************************************)
+(* *)
+(* Objective Caml *)
+(* *)
+(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
+(* *)
+(* Copyright 1996 Institut National de Recherche en Informatique et *)
+(* en Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU Library General Public License, with *)
+(* the special exception on linking described in file ../LICENSE. *)
+(* *)
+(***********************************************************************)
+
+(* $Id: mapext.mli,v 1.1 2014-02-24 16:25:06 mine Exp $ *)
+
+(** Association tables over ordered types.
+
+ This module implements applicative association tables, also known as
+ finite maps or dictionaries, given a total ordering function
+ over the keys.
+ All operations over maps are purely applicative (no side-effects).
+ The implementation uses balanced binary trees, and therefore searching
+ and insertion take time logarithmic in the size of the map.
+*)
+
+module type OrderedType =
+ sig
+ type t
+ (** The type of the map keys. *)
+ val compare : t -> t -> int
+ (** A total ordering function over the keys.
+ This is a two-argument function [f] such that
+ [f e1 e2] is zero if the keys [e1] and [e2] are equal,
+ [f e1 e2] is strictly negative if [e1] is smaller than [e2],
+ and [f e1 e2] is strictly positive if [e1] is greater than [e2].
+ Example: a suitable ordering function is the generic structural
+ comparison function {!Pervasives.compare}. *)
+ end
+(** Input signature of the functor {!Map.Make}. *)
+
+module type S =
+ sig
+ type key
+ (** The type of the map keys. *)
+
+ type (+'a) t
+ (** The type of maps from type [key] to type ['a]. *)
+
+ val empty: 'a t
+ (** The empty map. *)
+
+ val is_empty: 'a t -> bool
+ (** Test whether a map is empty or not. *)
+
+ val mem: key -> 'a t -> bool
+ (** [mem x m] returns [true] if [m] contains a binding for [x],
+ and [false] otherwise. *)
+
+ val add: key -> 'a -> 'a t -> 'a t
+ (** [add x y m] returns a map containing the same bindings as
+ [m], plus a binding of [x] to [y]. If [x] was already bound
+ in [m], its previous binding disappears. *)
+
+ val singleton: key -> 'a -> 'a t
+ (** [singleton x y] returns the one-element map that contains a binding [y]
+ for [x].
+ @since 3.12.0
+ *)
+
+ val remove: key -> 'a t -> 'a t
+ (** [remove x m] returns a map containing the same bindings as
+ [m], except for [x] which is unbound in the returned map. *)
+
+ val merge:
+ (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
+ (** [merge f m1 m2] computes a map whose keys is a subset of keys of [m1]
+ and of [m2]. The presence of each such binding, and the corresponding
+ value, is determined with the function [f].
+ @since 3.12.0
+ *)
+
+ val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
+ (** Total ordering between maps. The first argument is a total ordering
+ used to compare data associated with equal keys in the two maps. *)
+
+ val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
+ equal, that is, contain equal keys and associate them with
+ equal data. [cmp] is the equality predicate used to compare
+ the data associated with the keys. *)
+
+ val iter: (key -> 'a -> unit) -> 'a t -> unit
+ (** [iter f m] applies [f] to all bindings in map [m].
+ [f] receives the key as first argument, and the associated value
+ as second argument. The bindings are passed to [f] in increasing
+ order with respect to the ordering over the type of the keys. *)
+
+ val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
+ (** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
+ where [k1 ... kN] are the keys of all bindings in [m]
+ (in increasing order), and [d1 ... dN] are the associated data. *)
+
+ val for_all: (key -> 'a -> bool) -> 'a t -> bool
+ (* [AM] now guarantees the evaluation order *)
+ (** [for_all p m] checks if all the bindings of the map
+ satisfy the predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val exists: (key -> 'a -> bool) -> 'a t -> bool
+ (* [AM] now guarantees the evaluation order *)
+ (** [exists p m] checks if at least one binding of the map
+ satisfy the predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val filter: (key -> 'a -> bool) -> 'a t -> 'a t
+ (* [AM] now guarantees the evaluation order *)
+ (** [filter p m] returns the map with all the bindings in [m]
+ that satisfy predicate [p].
+ The predicate [p] is tested on bindings according to the key order.
+ @since 3.12.0
+ *)
+
+ val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
+ (** [partition p m] returns a pair of maps [(m1, m2)], where
+ [m1] contains all the bindings of [s] that satisfy the
+ predicate [p], and [m2] is the map with all the bindings of
+ [s] that do not satisfy [p].
+ @since 3.12.0
+ *)
+
+ val cardinal: 'a t -> int
+ (** Return the number of bindings of a map.
+ @since 3.12.0
+ *)
+
+ val bindings: 'a t -> (key * 'a) list
+ (** Return the list of all bindings of the given map.
+ The returned list is sorted in increasing order with respect
+ to the ordering [Ord.compare], where [Ord] is the argument
+ given to {!Map.Make}.
+ @since 3.12.0
+ *)
+
+ val min_binding: 'a t -> (key * 'a)
+ (** Return the smallest binding of the given map
+ (with respect to the [Ord.compare] ordering), or raise
+ [Not_found] if the map is empty.
+ @since 3.12.0
+ *)
+
+ val max_binding: 'a t -> (key * 'a)
+ (** Same as {!Map.S.min_binding}, but returns the largest binding
+ of the given map.
+ @since 3.12.0
+ *)
+
+ val choose: 'a t -> (key * 'a)
+ (** Return one binding of the given map, or raise [Not_found] if
+ the map is empty. Which binding is chosen is unspecified,
+ but equal bindings will be chosen for equal maps.
+ @since 3.12.0
+ *)
+
+ val split: key -> 'a t -> 'a t * 'a option * 'a t
+ (** [split x m] returns a triple [(l, data, r)], where
+ [l] is the map with all the bindings of [m] whose key
+ is strictly less than [x];
+ [r] is the map with all the bindings of [m] whose key
+ is strictly greater than [x];
+ [data] is [None] if [m] contains no binding for [x],
+ or [Some v] if [m] binds [v] to [x].
+ @since 3.12.0
+ *)
+
+ val find: key -> 'a t -> 'a
+ (** [find x m] returns the current binding of [x] in [m],
+ or raises [Not_found] if no such binding exists. *)
+
+ val map: ('a -> 'b) -> 'a t -> 'b t
+ (** [map f m] returns a map with same domain as [m], where the
+ associated value [a] of all bindings of [m] has been
+ replaced by the result of the application of [f] to [a].
+ The bindings are passed to [f] in increasing order
+ with respect to the ordering over the type of the keys. *)
+
+ val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
+ (** Same as {!Map.S.map}, but the function receives as arguments both the
+ key and the associated value for each binding of the map. *)
+
+
+ (* [AM] additions *)
+
+ (** {2 Additional functions} *)
+
+ val of_list: (key * 'a) list -> 'a t
+ (** [of_list l] converts an association list to a map. *)
+
+ val map2: (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ (** [map2 f m1 m2] is similar to [map] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key to construct a new map with the same key set.
+ [m1] and [m2] must have the same key sets.
+ The binging are passed to [f] in increasing order of key. *)
+
+ val iter2: (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ (** [iter2 f m1 m2] is similar to [map] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The binging are passed to [f] in increasing order of key. *)
+
+ val fold2: (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ (** [fold2 f m1 m2 x] is similar to [fold] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val for_all2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [for_all2 f m1 m2] is similar to [for_all] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val exists2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [exists2 f m1 m2] is similar to [exists] but applies [f] to pairs
+ of bindings [a1] from [m1] and [a2] from [m2] corresponding to
+ the same key.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+
+
+
+ val map2z: (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ (** [map2z f m1 m2] is similar to [map2 f m1 m2], but physically
+ equal subtrees are put unchanged into the result instead of
+ being traversed.
+ This is more efficient than [map2], and equivalent if [f] is
+ side-effect free and idem-potent ([f k a a = a]).
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val iter2z: (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ (** [iter2z f m1 m2] is similar to [iter2 f m1 m2], but physically
+ equal subtrees are ignored.
+ This is more efficient than [iter2], and equivalent if
+ [f k a a] has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val fold2z: (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ (** [fold2z f m1 m2 a] is similar to [fold2 f m1 m2 a], but physically
+ equal subtrees are ignored.
+ This is more efficient than [fold2], and equivalent if
+ [f k a a x = x] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val for_all2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [for_all2z f m1 m2] is similar to [for_all2 f m1 m2], but returns
+ [true] for physically equal subtrees without traversing them.
+ This is more efficient than [for_all2z], and equivalent if
+ [f k a a = true] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+ val exists2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [exists2z f m1 m2] is similar to [exists2 f m1 m2], but returns
+ [false] for physically equal subtrees without traversing them.
+ This is more efficient than [exists2z], and equivalent if
+ [f k a a = false] and has no effect.
+ [m1] and [m2] must have the same key sets.
+ The bindings are passed to [f] in increasing order of keys. *)
+
+
+
+
+ val map2o: (key -> 'a -> 'c) -> (key -> 'b -> 'c) -> (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
+ (** [map2o f1 f2 f m1 m2] is similar to [map2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ To get a new binding, [f1] is used for keys appearing only
+ in [m1], [f2] for keys appearing only in [m2], and [f] for
+ keys appearing in both maps.
+ The returned map has bindings for all keys appearing in either
+ [m1] or [m2].
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val iter2o: (key -> 'a -> unit) -> (key -> 'b -> unit) -> (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
+ (** [iter2o f1 f2 f m1 m2] is similar to [iter2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val fold2o: (key -> 'a -> 'c -> 'c) -> (key -> 'b -> 'c -> 'c) -> (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c
+ (** [fold2o f1 f2 f m1 m2 a] is similar to [fold2 f m1 m2 a], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val for_all2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [for_all2o f1 f2 f m1 m2] is similar to [for_all2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val exists2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
+ (** [fexists2o f1 f2 f m1 m2] is similar to [fexists2 f m1 m2], but
+ accepts maps defined over different sets of keys.
+ [f1] is called for keys appearing only in [m1],
+ [f2] for keys appearing only in [m2],
+ and [f] for keys appearing in both maps.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+
+
+ val map2zo: (key -> 'a -> 'a) -> (key -> 'a -> 'a) -> (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
+ (** [map2zo f1 f2 f m1 m2] is similar to [map2o f1 f2 f m1 m2] but,
+ similary to [map2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [map2o], and equivalent if [f] is
+ side-effect free and idem-potent ([f k a a = a]).
+ The returned map has bindings for all keys appearing in either
+ [m1] or [m2].
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val iter2zo: (key -> 'a -> unit) -> (key -> 'a -> unit) -> (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit
+ (** [iter2zo f1 f2 f m1 m2] is similar to [iter2o f1 f2 f m1 m2] but,
+ similary to [iter2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [iter2o], and equivalent if [f] is
+ side-effect free.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val fold2zo: (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b
+ (** [fold2zo f1 f2 f m1 m2 a] is similar to [fold2o f1 f2 f m1 m2 a] but,
+ similary to [fold2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [fold2o], and equivalent if
+ [f k a a x = x] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val for_all2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [for_all2zo f1 f2 f m1 m2] is similar to [for_all2o f1 f2 f m1 m2] but,
+ similary to [for_all2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [for_all2o], and equivalent if
+ [f k a a = true] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val exists2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool
+ (** [exists2zo f1 f2 f m1 m2] is similar to [exists2o f1 f2 f m1 m2] but,
+ similary to [exists2z], [f] is not called on physically equal
+ subtrees.
+ This is more efficient than [exists2o], and equivalent if
+ [f k a a = false] and has no side-effect.
+ The bindings are passed to [f], [f1], [f2] in increasing order of keys. *)
+
+ val map_slice: (key -> 'a -> 'a) -> 'a t -> key -> key -> 'a t
+ (** [map_slice f m k1 k2] is similar to [map f m], but only applies
+ [f] to bindings with key greater or equal to [k1] and smaller
+ or equal to [k2] to construct the returned map. Bindings with
+ keys outside this range in [m] are put unchanged in the result.
+ It is as if, outside this range, [f k a = a] and has no effect.
+ The result has the same key set as [m].
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val iter_slice: (key -> 'a -> unit) -> 'a t -> key -> key -> unit
+ (** [iter_slice f m k1 k2] is similar to [iter f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a] has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val fold_slice: (key -> 'a -> 'b -> 'b) -> 'a t -> key -> key -> 'b -> 'b
+ (** [fold_slice f m k1 k2 a] is similar to [fold f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a x = x] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val for_all_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ (** [for_all_slice f m k1 k2 a] is similar to [for_all f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a = true] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val exists_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool
+ (** [exists_slice f m k1 k2 a] is similar to [exists f m], but only calls
+ [f] on bindings with key greater or equal to [k1] and smaller
+ or equal to [k2].
+ It is as if, outside this range, [f k a = false] and has no effect.
+ The bindings are passed to [f] in increasing order of keys,
+ between [k1] and [k2]. *)
+
+ val key_equal: 'a t -> 'a t -> bool
+ (** [key_equal m1 m2] returns true if [m1] and [m2] are defined
+ over exactly the same set of keys (but with possibly different
+ values).
+ *)
+
+ val key_subset: 'a t -> 'a t -> bool
+ (** [key_equal m1 m2] returns true if [m1] is defined on a subset of
+ the keys of [m2] (but with possibly different values).
+ *)
+
+ val find_greater: key -> 'a t -> key * 'a
+ (** [find_greater k m] returns the binding (key and value) in [m]
+ with key strictly greater than [k] and as small as possible.
+ Raises [Not_found] if [m] has no binding for a key strictly greater
+ than [k].
+ *)
+
+ val find_less: key -> 'a t -> key * 'a
+ (** [find_less k m] returns the binding (key and value) in [m]
+ with key strictly less than [k] and as large as possible.
+ Raises [Not_found] if [m] has no binding for a key strictly less
+ than [k].
+ *)
+
+ val find_greater_equal: key -> 'a t -> key * 'a
+ (** [find_greater_euql k m] returns the binding (key and value) in [m]
+ with key greater or equal to [k] and as small as possible.
+ Raises [Not_found] if [m] has no binding for a key greater or equal
+ to [k].
+ *)
+
+ val find_less_equal: key -> 'a t -> key * 'a
+ (** [find_less_equal k m] returns the binding (key and value) in [m]
+ with key less or equal to [k] and as large as possible.
+ Raises [Not_found] if [m] has no binding for a key less or equal
+ to [k].
+ *)
+
+
+ end
+(** Output signature of the functor {!Map.Make}. *)
+
+module Make (Ord : OrderedType) : S with type key = Ord.t
+(** Functor building an implementation of the map structure
+ given a totally ordered type. *)
diff --git a/libs/util.ml b/libs/util.ml
new file mode 100644
index 0000000..30cf5bf
--- /dev/null
+++ b/libs/util.ml
@@ -0,0 +1,20 @@
+exception TypeError
+
+module VarMap = Mapext.Make(String)
+
+let rec fix equal f s =
+ let fs = f s in
+ if equal fs s
+ then fs
+ else fix equal f fs
+
+let (@@) f x = f x
+
+let print_list x l =
+ Format.printf "%s: " x;
+ let rec aux = function
+ | [] -> ()
+ | [a] -> Format.printf "%s" a
+ | p::q -> Format.printf "%s, " p; aux q
+ in
+ Format.printf "["; aux l; Format.printf "]@.";
diff --git a/main.ml b/main.ml
new file mode 100644
index 0000000..4f70229
--- /dev/null
+++ b/main.ml
@@ -0,0 +1,25 @@
+open Ast
+
+(* command line options *)
+let dump = ref false
+let ifile = ref ""
+
+let usage = "usage: analyzer [options] file.scade"
+
+let options = [
+ "--dump", Arg.Set dump, "Dump program source.";
+]
+
+let () =
+ Arg.parse options (fun f -> ifile := f) usage;
+
+ if !ifile = "" then begin
+ Format.eprintf "No input file...@.";
+ exit 1
+ end;
+
+ let prog = File_parser.parse_file !ifile in
+ if !dump then Ast_printer.print_prog Format.std_formatter prog;
+ () (* nothing to do yet ... *)
+
+