1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
(* SIMPLIFICATION PASSES *)
(*
Order of simplifications :
- cascade slices and selects
- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
transform k = SLICE i i var into k = SELECT i var
- transform k = SELECT 0 var into k = var when var is also one bit
- look for variables with same equation, put the second to identity
- eliminate k' for each equation k' = k
- topological sort
TODO : eliminate unused variables. problem : they are hard to identify
*)
open Netlist_ast
module Sset = Set.Make(String)
module Smap = Map.Make(String)
(* Simplify cascade slicing/selecting *)
let cascade_slices p =
let usefull = ref false in
let slices = Hashtbl.create 42 in
let eqs_new = List.map
(fun (n, eq) -> (n, match eq with
| Eslice(u, v, Avar(x)) ->
let dec, nx =
if Hashtbl.mem slices x then begin
Hashtbl.find slices x
end else
(0, x)
in
Hashtbl.add slices n (u + dec, nx);
if nx <> x || dec <> 0 then usefull := true;
Eslice(u + dec, v + dec, Avar(nx))
| Eselect(u, Avar(x)) ->
begin try
let ku, kx = Hashtbl.find slices x in
usefull := true;
Eselect(ku + u, Avar(kx))
with
Not_found -> Eselect(u, Avar(x))
end
| _ -> eq))
p.p_eqs in
{
p_eqs = eqs_new;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* Simplifies some trivial arithmetic possibilites :
a and 1 = a
a and 0 = 0
a or 1 = 1
a or 0 = a
a xor 0 = a
slice i i x = select i x
concat const const = const.const
slice i j const = const.[i..j]
select i const = const.[i]
*)
let arith_simplify p =
let usefull = ref false in
{
p_eqs = List.map
(fun (n, eq) ->
let useless = ref false in
let neq = match eq with
| Ebinop(Or, Aconst([|false|]), x) -> Earg(x)
| Ebinop(Or, Aconst([|true|]), x) -> Earg(Aconst([|true|]))
| Ebinop(Or, x, Aconst([|false|])) -> Earg(x)
| Ebinop(Or, x, Aconst([|true|])) -> Earg(Aconst([|true|]))
| Ebinop(And, Aconst([|false|]), x) -> Earg(Aconst([|false|]))
| Ebinop(And, Aconst([|true|]), x) -> Earg(x)
| Ebinop(And, x, Aconst([|false|])) -> Earg(Aconst([|false|]))
| Ebinop(And, x, Aconst([|true|])) -> Earg(x)
| Ebinop(Xor, Aconst([|false|]), x) -> Earg(x)
| Ebinop(Xor, x, Aconst([|false|])) -> Earg(x)
| Eslice(i, j, k) when i = j -> Eselect(i, k)
| Econcat(Aconst(a), Aconst(b)) ->
Earg(Aconst(Array.append a b))
| Eslice(i, j, Aconst(a)) ->
Earg(Aconst(Array.sub a i (j - i + 1)))
| Eselect(i, Aconst(a)) ->
Earg(Aconst([|a.(i)|]))
| _ -> useless := true; eq in
if not !useless then usefull := true;
(n, neq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* if x is one bit, then :
select 0 x = x
and same thing with select
*)
let select_to_id p =
let usefull = ref false in
{
p_eqs = List.map
(fun (n, eq) -> match eq with
| Eselect(0, Avar(id)) when Env.find id p.p_vars = 1 ->
usefull := true;
(n, Earg(Avar(id)))
| Eslice(0, sz, Avar(id)) when Env.find id p.p_vars = sz + 1 ->
usefull := true;
(n, Earg(Avar(id)))
| _ -> (n, eq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(*
If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...) <- the same equation
then say b = a
*)
let same_eq_simplify p =
let usefull = ref false in
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let eq_map = Hashtbl.create 42 in
List.iter
(fun (n, eq) -> if Sset.mem n id_outputs then
Hashtbl.add eq_map eq n)
p.p_eqs;
let simplify_eq (n, eq) =
if Sset.mem n id_outputs then
(n, eq)
else if Hashtbl.mem eq_map eq then begin
usefull := true;
(n, Earg(Avar(Hashtbl.find eq_map eq)))
end else begin
Hashtbl.add eq_map eq n;
(n, eq)
end
in
let eq2 = List.map simplify_eq p.p_eqs in
{
p_eqs = eq2;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* Replace one specific variable by another argument in the arguments of all equations
(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
let rep_arg = function
| Avar(i) when i = var -> rep
| k -> k
in
let rep_eqs = List.map
(fun (n, eq) -> (n, match eq with
| Earg(a) -> Earg(rep_arg a)
| Ereg(i) when i = var ->
begin match rep with
| Avar(j) -> Ereg(j)
| Aconst(k) -> Earg(Aconst(k))
end
| Ereg(j) -> Ereg(j)
| Enot(a) -> Enot(rep_arg a)
| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
| Erom(u, v, a) -> Erom(u, v, rep_arg a)
| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
| Eselect(u, a) -> Eselect(u, rep_arg a)
))
p.p_eqs in
{
p_eqs = List.fold_left
(fun x (n, eq) ->
if n = var then x else (n, eq)::x)
[] rep_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = Env.remove var p.p_vars;
}
(* Remove all equations of type :
a = b
a = const
(except if a is an output variable)
*)
let rec eliminate_id p =
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let rep =
List.fold_left
(fun x (n, eq) ->
if x = None && (not (Sset.mem n id_outputs)) then
match eq with
| Earg(rarg) ->
Some(n, rarg)
| _ -> None
else
x)
None p.p_eqs in
match rep with
| None -> p, false
| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true
(* Eliminate dead variables *)
let eliminate_dead p =
let rec living basis =
let new_basis = List.fold_left
(fun b2 (n, eq) ->
if Sset.mem n b2 then
List.fold_left
(fun x k -> Sset.add k x)
b2
(Scheduler.read_exp_all eq)
else
b2)
basis (List.rev p.p_eqs)
in
if Sset.cardinal new_basis > Sset.cardinal basis
then living new_basis
else new_basis
in
let outs = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs in
let ins = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_inputs in
let live = living (Sset.union outs ins) in
{
p_eqs = List.filter (fun (n, _) -> Sset.mem n live) p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = Env.fold
(fun k s newenv ->
if Sset.mem k live
then Env.add k s newenv
else newenv)
p.p_vars Env.empty
}, (Sset.cardinal live < Env.cardinal p.p_vars)
(* Topological sort *)
let topo_sort p =
(Scheduler.schedule p, false)
(* Apply all the simplification passes,
in the order given in the header of this file
*)
let rec simplify_with steps p =
let pp, use = List.fold_left
(fun (x, u) (f, n) ->
print_string n;
let xx, uu = f x in
print_string (if uu then " *\n" else "\n");
(xx, u || uu))
(p, false) steps in
if use then simplify_with steps pp else pp
let simplify p =
let p = simplify_with [ topo_sort, "topo_sort" ] p in
let p = simplify_with [
cascade_slices, "cascade_slices";
arith_simplify, "arith_simplify";
select_to_id, "select_to_id";
same_eq_simplify, "same_eq_simplify";
eliminate_id, "eliminate_id";
] p in
let p = simplify_with [
eliminate_dead, "eliminate_dead";
topo_sort, "topo_sort"; (* make sure last step is a topological sort *)
] p in
p
|