(* SIMPLIFICATION PASSES *)
(*
Order of simplifications :
- cascade slices and selects
- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
transform k = SLICE i i var into k = SELECT i var
- transform k = SELECT 0 var into k = var when var is also one bit
- look for variables with same equation, put the second to identity
- eliminate k' for each equation k' = k
- topological sort
TODO : eliminate unused variables. problem : they are hard to identify
*)
open Netlist_ast
module Sset = Set.Make(String)
module Smap = Map.Make(String)
(* Simplify cascade slicing/selecting *)
let cascade_slices p =
let usefull = ref false in
let slices = Hashtbl.create 42 in
let eqs_new = List.map
(fun (n, eq) -> (n, match eq with
| Eslice(u, v, Avar(x)) ->
let dec, nx =
if Hashtbl.mem slices x then begin
Hashtbl.find slices x
end else
(0, x)
in
Hashtbl.add slices n (u + dec, nx);
if nx <> x || dec <> 0 then usefull := true;
Eslice(u + dec, v + dec, Avar(nx))
| Eselect(u, Avar(x)) ->
begin try
let ku, kx = Hashtbl.find slices x in
usefull := true;
Eselect(ku + u, Avar(kx))
with
Not_found -> Eselect(u, Avar(x))
end
| _ -> eq))
p.p_eqs in
{
p_eqs = eqs_new;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* Simplifies some trivial arithmetic possibilites :
a and 1 = a
a and 0 = 0
a or 1 = 1
a or 0 = a
a xor 0 = a
slice i i x = select i x
concat const const = const.const
slice i j const = const.[i..j]
select i const = const.[i]
*)
let arith_simplify p =
let usefull = ref false in
{
p_eqs = List.map
(fun (n, eq) ->
let useless = ref false in
let neq = match eq with
| Ebinop(Or, Aconst([|false|]), x) -> Earg(x)
| Ebinop(Or, Aconst([|true|]), x) -> Earg(Aconst([|true|]))
| Ebinop(Or, x, Aconst([|false|])) -> Earg(x)
| Ebinop(Or, x, Aconst([|true|])) -> Earg(Aconst([|true|]))
| Ebinop(And, Aconst([|false|]), x) -> Earg(Aconst([|false|]))
| Ebinop(And, Aconst([|true|]), x) -> Earg(x)
| Ebinop(And, x, Aconst([|false|])) -> Earg(Aconst([|false|]))
| Ebinop(And, x, Aconst([|true|])) -> Earg(x)
| Ebinop(Xor, Aconst([|false|]), x) -> Earg(x)
| Ebinop(Xor, x, Aconst([|false|])) -> Earg(x)
| Eslice(i, j, k) when i = j -> Eselect(i, k)
| Econcat(Aconst(a), Aconst(b)) ->
Earg(Aconst(Array.append a b))
| Eslice(i, j, Aconst(a)) ->
Earg(Aconst(Array.sub a i (j - i + 1)))
| Eselect(i, Aconst(a)) ->
Earg(Aconst([|a.(i)|]))
| _ -> useless := true; eq in
if not !useless then usefull := true;
(n, neq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* if x is one bit, then :
select 0 x = x
and same thing with select
*)
let select_to_id p =
let usefull = ref false in
{
p_eqs = List.map
(fun (n, eq) -> match eq with
| Eselect(0, Avar(id)) when Env.find id p.p_vars = 1 ->
usefull := true;
(n, Earg(Avar(id)))
| Eslice(0, sz, Avar(id)) when Env.find id p.p_vars = sz + 1 ->
usefull := true;
(n, Earg(Avar(id)))
| _ -> (n, eq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(*
If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...) <- the same equation
then say b = a
*)
let same_eq_simplify p =
let usefull = ref false in
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let eq_map = Hashtbl.create 42 in
List.iter
(fun (n, eq) -> if Sset.mem n id_outputs then
Hashtbl.add eq_map eq n)
p.p_eqs;
let simplify_eq (n, eq) =
if Sset.mem n id_outputs then
(n, eq)
else if Hashtbl.mem eq_map eq then begin
usefull := true;
(n, Earg(Avar(Hashtbl.find eq_map eq)))
end else begin
Hashtbl.add eq_map eq n;
(n, eq)
end
in
let eq2 = List.map simplify_eq p.p_eqs in
{
p_eqs = eq2;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}, !usefull
(* Replace one specific variable by another argument in the arguments of all equations
(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
let rep_arg = function
| Avar(i) when i = var -> rep
| k -> k
in
let rep_eqs = List.map
(fun (n, eq) -> (n, match eq with
| Earg(a) -> Earg(rep_arg a)
| Ereg(i) when i = var ->
begin match rep with
| Avar(j) -> Ereg(j)
| Aconst(k) -> Earg(Aconst(k))
end
| Ereg(j) -> Ereg(j)
| Enot(a) -> Enot(rep_arg a)
| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
| Erom(u, v, a) -> Erom(u, v, rep_arg a)
| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
| Eselect(u, a) -> Eselect(u, rep_arg a)
))
p.p_eqs in
{
p_eqs = List.fold_left
(fun x (n, eq) ->
if n = var then x else (n, eq)::x)
[] rep_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = Env.remove var p.p_vars;
}
(* Remove all equations of type :
a = b
a = const
(except if a is an output variable)
*)
let rec eliminate_id p =
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let rep =
List.fold_left
(fun x (n, eq) ->
if x = None && (not (Sset.mem n id_outputs)) then
match eq with
| Earg(rarg) ->
Some(n, rarg)
| _ -> None
else
x)
None p.p_eqs in
match rep with
| None -> p, false
| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true
(* Eliminate dead variables *)
let eliminate_dead p =
let rec living basis =
let new_basis = List.fold_left
(fun b2 (n, eq) ->
if Sset.mem n b2 then
List.fold_left
(fun x k -> Sset.add k x)
b2
(Scheduler.read_exp_all eq)
else
b2)
basis (List.rev p.p_eqs)
in
if Sset.cardinal new_basis > Sset.cardinal basis
then living new_basis
else new_basis
in
let outs = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs in
let ins = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_inputs in
let live = living (Sset.union outs ins) in
{
p_eqs = List.filter (fun (n, _) -> Sset.mem n live) p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = Env.fold
(fun k s newenv ->
if Sset.mem k live
then Env.add k s newenv
else newenv)
p.p_vars Env.empty
}, (Sset.cardinal live < Env.cardinal p.p_vars)
(* Topological sort *)
let topo_sort p =
(Scheduler.schedule p, false)
(* Apply all the simplification passes,
in the order given in the header of this file
*)
let rec simplify_with steps p =
let pp, use = List.fold_left
(fun (x, u) (f, n) ->
print_string n;
let xx, uu = f x in
print_string (if uu then " *\n" else "\n");
(xx, u || uu))
(p, false) steps in
if use then simplify_with steps pp else pp
let simplify p =
let p = simplify_with [ topo_sort, "topo_sort" ] p in
let p = simplify_with [
cascade_slices, "cascade_slices";
arith_simplify, "arith_simplify";
select_to_id, "select_to_id";
same_eq_simplify, "same_eq_simplify";
eliminate_id, "eliminate_id";
] p in
let p = simplify_with [
eliminate_dead, "eliminate_dead";
topo_sort, "topo_sort"; (* make sure last step is a topological sort *)
] p in
p