summaryrefslogblamecommitdiff
path: root/sched/simplify.ml
blob: db8125ba78c7a9f636c9a35fc11181a5e1e7ae85 (plain) (tree)
1
2
3
4
5
6
7
8
9
10









                                                                           
                          
 
                                                                              




                              
                              


                                        
                                  



                                                  
                                             
                                                                          
                                                                     
                                                 
                                                       
                                  
                                                                   
                                                                            
                                                                  


                                                                             
                                                        










                                                                        
                   







                                                    


                                        

                      
                                  

                                


                                                  



                                                                                   
 



                                                                                      
 

                                                                      
 
                                                                     

                                                          
                                                              
                        

                                                                       
                        

                                                       
                        


                                                             



                                        
                   


                          
                            

                    
                                  


                                                     





                                                                                       




                                        
                   





                                                                               
                                  









                                                                                    

                                                        
                                                               
                              









                                                 
                   






























































                                                                                                          

                              





























                                                                                     
 


                                     
 
 


                                                     
                               
                                    

                                       
                                            
                                                                   

                                      















                                                                                       
 
(* SIMPLIFICATION PASSES *)

(*
	Order of simplifications :
	- cascade slices and selects
	- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
	  transform k = SLICE i i var into k = SELECT i var
	- transform k = SELECT 0 var into k = var when var is also one bit
	- look for variables with same equation, put the second to identity
	- eliminate k' for each equation k' = k
	- topological sort

	TODO : eliminate unused variables. problem : they are hard to identify
*)

open Netlist_ast

module Sset = Set.Make(String)
module Smap = Map.Make(String)

(* Simplify cascade slicing/selecting *)
let cascade_slices p =
	let usefull = ref false in
	let slices = Hashtbl.create 42 in
	let eqs_new = List.map
		(fun (n, eq) -> (n, match eq with
			| Eslice(u, v, Avar(x)) ->
				let dec, nx =
					if Hashtbl.mem slices x then begin
						Hashtbl.find slices x
					end else 
						 (0, x)
				in
				Hashtbl.add slices n (u + dec, nx);
				if nx <> x || dec <> 0 then usefull := true;
				Eslice(u + dec, v + dec, Avar(nx))
			| Eselect(u, Avar(x)) ->
				begin try
					let ku, kx = Hashtbl.find slices x in
					usefull := true;
					Eselect(ku + u, Avar(kx))
				with
					Not_found -> Eselect(u, Avar(x))
				end
			| _ -> eq))
		p.p_eqs in
	{
		p_eqs = eqs_new;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(* Simplifies some trivial arithmetic possibilites :
	a and 1 = a
	a and 0 = 0
	a or 1 = 1
	a or 0 = a
	a xor 0 = a
	slice i i x = select i x
	concat const const = const.const
	slice i j const = const.[i..j]
	select i const = const.[i]
*)
let arith_simplify p =
	let usefull = ref false in
	{
		p_eqs = List.map
			(fun (n, eq) ->
			let useless = ref false in
			let neq = match eq with
			| Ebinop(Or, Aconst([|false|]), x) -> Earg(x)
			| Ebinop(Or, Aconst([|true|]), x) -> Earg(Aconst([|true|]))
			| Ebinop(Or, x, Aconst([|false|])) -> Earg(x)
			| Ebinop(Or, x, Aconst([|true|])) -> Earg(Aconst([|true|]))

			| Ebinop(And, Aconst([|false|]), x) -> Earg(Aconst([|false|]))
			| Ebinop(And, Aconst([|true|]), x) -> Earg(x)
			| Ebinop(And, x, Aconst([|false|])) -> Earg(Aconst([|false|]))
			| Ebinop(And, x, Aconst([|true|])) -> Earg(x)

			| Ebinop(Xor, Aconst([|false|]), x) -> Earg(x)
			| Ebinop(Xor, x, Aconst([|false|])) -> Earg(x)

			| Eslice(i, j, k) when i = j -> Eselect(i, k)

			| Econcat(Aconst(a), Aconst(b)) ->
				Earg(Aconst(Array.append a b))
			
			| Eslice(i, j, Aconst(a)) ->
				Earg(Aconst(Array.sub a i (j - i + 1)))
			
			| Eselect(i, Aconst(a)) ->
				Earg(Aconst([|a.(i)|]))
			
			| _ ->  useless := true; eq in
			if not !useless then usefull := true;
			(n, neq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(* if x is one bit, then :
	select 0 x = x
  and same thing with select
*)
let select_to_id p =
	let usefull = ref false in
	{
		p_eqs = List.map
			(fun (n, eq) -> match eq with
			| Eselect(0, Avar(id)) when Env.find id p.p_vars = 1 ->
				usefull := true;
				(n, Earg(Avar(id)))
			| Eslice(0, sz, Avar(id)) when Env.find id p.p_vars = sz + 1 ->
				usefull := true;
				(n, Earg(Avar(id)))
			| _ -> (n, eq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(*
	If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...)   <- the same equation
	then say b = a
*)
let same_eq_simplify p =
	let usefull = ref false in
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
	let eq_map = Hashtbl.create 42 in
	List.iter
		(fun (n, eq) -> if Sset.mem n id_outputs then
			Hashtbl.add eq_map eq n)
		p.p_eqs;
	let simplify_eq (n, eq) =
		if Sset.mem n id_outputs then
			(n, eq)
		else if Hashtbl.mem eq_map eq then begin
			usefull := true;
			(n, Earg(Avar(Hashtbl.find eq_map eq)))
		end else begin
			Hashtbl.add eq_map eq n;
			(n, eq)
		end
	in
	let eq2 = List.map simplify_eq p.p_eqs in
	{
		p_eqs = eq2;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull


(*	Replace one specific variable by another argument in the arguments of all equations
	(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
	let rep_arg = function
		| Avar(i) when i = var -> rep
		| k -> k
	in
	let rep_eqs = List.map
		(fun (n, eq) -> (n, match eq with
			| Earg(a) -> Earg(rep_arg a)
			| Ereg(i) when i = var ->
				begin match rep with
				| Avar(j) -> Ereg(j)
				| Aconst(k) -> Earg(Aconst(k))
				end
			| Ereg(j) -> Ereg(j)
			| Enot(a) -> Enot(rep_arg a)
			| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
			| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
			| Erom(u, v, a) -> Erom(u, v, rep_arg a)
			| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
			| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
			| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
			| Eselect(u, a) -> Eselect(u, rep_arg a)
			))
		p.p_eqs in
	{
		p_eqs = List.fold_left
			(fun x (n, eq) ->
				if n = var then x else (n, eq)::x)
			[] rep_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = Env.remove var p.p_vars;
	}

(* Remove all equations of type :
	a = b
	a = const
	(except if a is an output variable)
*)
let rec eliminate_id p =
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in

	let rep =
		List.fold_left
			(fun x (n, eq) ->
				if x = None && (not (Sset.mem n id_outputs)) then
					match eq with
					| Earg(rarg) -> 
						Some(n, rarg)
					| _ -> None
				else
					x)
			None p.p_eqs in
	match rep with
	| None -> p, false
	| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true

(* Eliminate dead variables *)
let eliminate_dead p =
	let rec living basis =
		let new_basis = List.fold_left
			(fun b2 (n, eq) ->
				if Sset.mem n b2 then
					List.fold_left
						(fun x k -> Sset.add k x)
						b2
						(Scheduler.read_exp_all eq)
				else
					b2)
			basis (List.rev p.p_eqs)
		in
		if Sset.cardinal new_basis > Sset.cardinal basis
			then living new_basis
			else new_basis
	in
	let outs = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs in
	let ins = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_inputs in
	let live = living (Sset.union outs ins) in
	{
		p_eqs = List.filter (fun (n, _) -> Sset.mem n live) p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = Env.fold
			(fun k s newenv -> 
				if Sset.mem k live
					then Env.add k s newenv
					else newenv)
			p.p_vars Env.empty
	}, (Sset.cardinal live < Env.cardinal p.p_vars)

(* Topological sort *)
let topo_sort p =
	(Scheduler.schedule p, false)


(* Apply all the simplification passes,
	in the order given in the header of this file
*)
let rec simplify_with steps p =
	let pp, use = List.fold_left
		(fun (x, u) (f, n) ->
			print_string n;
			let xx, uu = f x in 
			print_string (if uu then " *\n" else "\n");
			(xx, u || uu))
		(p, false) steps in
	if use then simplify_with steps pp else pp

let simplify p =
	let p = simplify_with [ topo_sort, "topo_sort" ] p in
	let p = simplify_with [
		cascade_slices, "cascade_slices";
		arith_simplify, "arith_simplify";
		select_to_id, "select_to_id";
		same_eq_simplify, "same_eq_simplify"; 
		eliminate_id, "eliminate_id";
	] p in
	let p = simplify_with [
		eliminate_dead, "eliminate_dead";
		topo_sort, "topo_sort";	(* make sure last step is a topological sort *)
	] p in
	p