1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
(*
Langages de Programmation et Compilation (J.-C. Filliatre)
2013-2014
Alex AUVOLAT
Parser for Mini-C++
*)
%{
open Ast
type var =
| VId of ident
| VPtr of var
| VRef of var
(* return type, name *)
let rec reverse_var bt v = match v with
| VId(i) -> bt, i
| VPtr(vv) -> let ty, id = reverse_var bt vv in TPtr(ty), id
| VRef(vv) -> let ty, id = reverse_var bt vv in TRef(ty), id
(* return type, class, name *)
let rec reverse_qvar bt (v, cl) =
let ty, na = reverse_var bt v in
ty, cl, na
%}
%token <int> INTVAL
%token <string> STRVAL
%token <string> IDENT
%token <string> TIDENT
(* this is stupid *)
%token INCLUDE_IOSTREAM STD_COUT
(* keywords *)
%token CLASS ELSE FALSE FOR IF INT NEW NULL PUBLIC RETURN
%token THIS TRUE VIRTUAL VOID WHILE
(* operators *)
%token ASSIGN LOR LAND EQ NE LT LE GT GE PLUS MINUS
%token TIMES DIV MOD NOT INCR DECR REF
%token LPAREN RPAREN RARROW DOT
(* other symbols *)
%token SEMICOLON COLON DOUBLECOLON LFLOW LBRACE RBRACE COMMA EOF
(* operator priority *)
%right ASSIGN
%left LOR
%left LAND
%left EQ NE
%left LT LE GT GE
%left PLUS MINUS
%left TIMES DIV MOD
%nonassoc LPAREN
%start <Ast.program> prog
%%
prog:
INCLUDE_IOSTREAM?
decls = declaration*
EOF
{ List.flatten decls }
;
declaration:
| p = proto
b = block
{ [ DFunction(p, b) ] }
| vars = typed_vars
SEMICOLON
{ List.map (fun k -> DGlobal(k)) vars }
| n = cls
s = supers? LBRACE PUBLIC COLON
m = member* RBRACE SEMICOLON
{
[ DClass({
c_name = n;
c_supers = s;
c_members = List.flatten m;
}) ]
}
;
cls:
CLASS n = IDENT
{
type_names := Sset.add n !type_names;
n
}
;
supers:
COLON s = separated_nonempty_list(COMMA, preceded(PUBLIC, TIDENT)) { s }
;
member:
| k = typed_vars SEMICOLON
{ List.map (fun (x, y) -> CVar(x, y)) k }
| p = cls_proto SEMICOLON
{ [ CMethod(p) ] }
| VIRTUAL p = cls_proto SEMICOLON
{ [ CVirtualMethod(p) ] }
;
cls_proto:
| ident = typed_var
LPAREN args = separated_list(COMMA, typed_var) RPAREN
{ {
p_ret_type = Some(fst ident);
p_name = snd ident;
p_class = None;
p_args = args;
p_loc = $startpos, $endpos } }
| cls = TIDENT
LPAREN args = separated_list(COMMA, typed_var) RPAREN
{ {p_ret_type = None;
p_name = cls;
p_class = Some cls;
p_args = args;
p_loc = $startpos, $endpos } }
;
proto:
| ident = typed_qvar
LPAREN args = separated_list(COMMA, typed_var) RPAREN
{
let ty, cl, na = ident in
{ p_ret_type = Some ty; p_name = na; p_class = cl; p_args = args; p_loc = $startpos, $endpos } }
| cls = TIDENT DOUBLECOLON cls2 = TIDENT
LPAREN args = separated_list(COMMA, typed_var) RPAREN
{
{p_ret_type = None; p_name = cls2; p_class = Some cls; p_args = args; p_loc = $startpos, $endpos}
}
;
base_type:
| VOID { TVoid }
| INT { TInt }
| t = TIDENT { TIdent(t) }
;
typed_var:
| b = base_type
x = var
{ reverse_var b x }
;
typed_vars:
| b = base_type
x = separated_nonempty_list(COMMA, var)
{ List.map (reverse_var b) x }
;
var:
| t = IDENT { VId(t) }
| TIMES v = var { VPtr(v) }
| REF v = var { VRef(v) }
;
typed_qvar:
| b = base_type
x = qvar
{ reverse_qvar b x }
;
qvar:
| c = TIDENT DOUBLECOLON t = IDENT { VId(t), Some(c) }
| t = IDENT { VId(t), None }
| TIMES v = qvar { VPtr(fst v), snd v }
| REF v = qvar { VRef(fst v), snd v }
;
block:
| LBRACE
i = statement*
RBRACE
{ i }
;
statement:
| d = statement_desc { { s_loc = $startpos, $endpos; s_desc = d } }
;
statement_desc:
| k = common_statement { k }
| IF LPAREN c = expression RPAREN s = statement
{ SIf(c, s, { s_loc = $startpos, $endpos; s_desc = SEmpty}) }
| IF LPAREN c = expression RPAREN s = no_if_statement ELSE t = statement
{ SIf(c, s, t) }
| WHILE LPAREN c = expression RPAREN s = statement
{ SWhile(c, s) }
| FOR LPAREN k = separated_list(COMMA, expression) SEMICOLON
c = expression? SEMICOLON
r = separated_list(COMMA, expression) RPAREN
b = statement
{ SFor(k, c, r, b) }
;
no_if_statement:
| d = no_if_statement_desc { { s_loc = $startpos, $endpos; s_desc = d } }
;
no_if_statement_desc:
| WHILE LPAREN c = expression RPAREN s = no_if_statement
{ SWhile(c, s) }
| FOR LPAREN k = separated_list(COMMA, expression) SEMICOLON
c = expression? SEMICOLON
r = separated_list(COMMA, expression) RPAREN
b = no_if_statement
{ SFor(k, c, r, b) }
| c = common_statement { c }
;
common_statement:
| SEMICOLON
{ SEmpty }
| e = expression SEMICOLON { SExpr(e) }
| b = block
{ SBlock (b) }
| RETURN e = expression? SEMICOLON
{ SReturn (e) }
| k = typed_var SEMICOLON
{ SDeclare(fst k, snd k) }
| k = typed_var ASSIGN v = expression SEMICOLON
{ SDeclareAssignExpr(fst k, snd k, v) }
| k = typed_var ASSIGN cls = TIDENT LPAREN args = separated_list(COMMA, expression) RPAREN SEMICOLON
{ SDeclareAssignConstructor(fst k, snd k, cls, args) }
| STD_COUT
a = nonempty_list(preceded(LFLOW, str_expression))
SEMICOLON
{ SWriteCout(a) }
;
expression:
| e = expression_desc
{ { e_loc = $startpos, $endpos; e_desc = e } }
| l = lunop { l }
;
expression_desc:
| e1 = expression ASSIGN e2 = expression { EAssign(e1, e2) }
| a = expression b = binop c = expression { EBinary(a, b, c) }
| a = expression LPAREN arg = separated_list(COMMA, expression) RPAREN { ECall(a, arg) }
| NEW c = TIDENT LPAREN args = separated_list(COMMA, expression) RPAREN { ENew(c, args) }
;
%inline binop:
| EQ {Equal }
| NE { NotEqual }
| LAND { Land }
| LOR { Lor }
| GT { Gt }
| GE { Ge }
| LT { Lt }
| LE { Le }
| PLUS { Add }
| MINUS { Sub }
| TIMES { Mul }
| DIV { Div }
| MOD { Modulo }
;
primary:
| LPAREN e = expression RPAREN
{ { e_loc = $startpos, $endpos; e_desc = e.e_desc } }
| k = primary_desc
{ { e_loc = $startpos, $endpos; e_desc = k } }
;
primary_desc:
| NULL { ENull }
| THIS { EThis }
| i = INTVAL { EInt(i) }
| TRUE { EBool(true) }
| FALSE { EBool(false) }
| i = IDENT { EIdent(i) }
| a = primary RARROW b = IDENT
{ EMember(
{ e_loc = $startpos, $endpos; e_desc = EUnary(Deref, a)}
, b) }
| a = primary DOT b = IDENT
{ EMember(a, b) }
;
runop:
| e = runop_desc { { e_loc = $startpos, $endpos; e_desc = e } }
| p = primary { p }
;
runop_desc:
| e = runop INCR { EUnary(PostIncr, e) }
| e = runop DECR { EUnary(PostDecr, e) }
;
lunop:
| e = lunop_desc
{ { e_loc = $startpos, $endpos; e_desc = e } }
| k = runop { k }
;
lunop_desc:
| NOT e = lunop { EUnary(Not, e) }
| MINUS e = lunop { EUnary(Minus, e) }
| PLUS e = lunop { EUnary(Plus, e) }
| REF e = lunop { EUnary(Ref, e) }
| TIMES e = lunop { EUnary(Deref, e) }
| INCR e = lunop { EUnary(PreIncr, e) }
| DECR e = lunop { EUnary(PreDecr, e) }
;
str_expression:
| e = expression { { se_loc = e.e_loc; se_desc = SEExpr(e.e_desc) } }
| s = STRVAL { { se_loc = $startpos, $endpos; se_desc = SEStr(s) } }
;
|