aboutsummaryrefslogtreecommitdiff
path: root/kernel/l0/thread.c
blob: bd40cc88f068ea9b380840ca0d7638fabcbc1fc8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <thread.h>
#include <kmalloc.h>
#include <dbglog.h>
#include <idt.h>

#include <frame.h>
#include <paging.h>

void save_context_and_enter_scheduler(saved_context_t *ctx);
void irq0_save_context_and_enter_scheduler(saved_context_t *ctx);
void resume_context(saved_context_t *ctx);

thread_t *current_thread = 0;

// ====================== //
// THE PROGRAMMABLE TIMER //
// ====================== //

void set_pit_frequency(uint32_t freq) {
   uint32_t divisor = 1193180 / freq;
   ASSERT(divisor < 65536);	// must fit on 16 bits

   uint8_t l = (divisor & 0xFF);
   uint8_t h = ((divisor >> 8) & 0xFF);

   outb(0x43, 0x36);
   outb(0x40, l);
   outb(0x40, h);
}

// ============================= //
// HELPER : IF FLAG MANIPULATION //
// ============================= //

static inline bool disable_interrupts() {
	uint32_t eflags;
	asm volatile("pushf; pop %0" : "=r"(eflags));
	asm volatile("cli");
	return (eflags & EFLAGS_IF) != 0;
}

static inline void resume_interrupts(bool st) {
	if (st) asm volatile("sti");
}

// ================== //
// THE TASK SCHEDULER //
// ================== //

static thread_t *queue_first_thread = 0, *queue_last_thread = 0;

void enqueue_thread(thread_t *t, bool just_ran) {
	ASSERT(t->state == T_STATE_RUNNING);
	if (queue_first_thread == 0) {
		queue_first_thread = queue_last_thread = t;
		t->next_in_queue = 0;
	} else if (just_ran) {
		t->next_in_queue = 0;
		queue_last_thread->next_in_queue = t;
		queue_last_thread = t;
	} else {
		t->next_in_queue = queue_first_thread;
		queue_first_thread = t;
	}
}

thread_t* dequeue_thread() {
	thread_t *t = queue_first_thread;
	if (t == 0) return 0;

	queue_first_thread = t->next_in_queue;
	if (queue_first_thread == 0) queue_last_thread = 0;

	return t;
}

// ================ //
// THE TASKING CODE //
// ================ //

void run_scheduler() {
	// At this point, interrupts are disabled
	// This function is expected NEVER TO RETURN

	if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) {
		enqueue_thread(current_thread, true);
	}

	current_thread = dequeue_thread();
	if (current_thread != 0) {
		resume_context(&current_thread->ctx);
	} else {
		// Wait for an IRQ
		asm volatile("sti; hlt");
		// At this point an IRQ has happenned
		// and has been processed. Loop around. 
		run_scheduler();
		ASSERT(false);
	}
}

static void run_thread(void (*entry)(void*), void* data) {
	ASSERT(current_thread->state == T_STATE_RUNNING);

	switch_pagedir(get_kernel_pagedir());

	asm volatile("sti");
	entry(data);

	current_thread->state = T_STATE_FINISHED;
	// TODO : add job for deleting the thread, or whatever
	yield();	// expected never to return!
	ASSERT(false);
}
thread_t *new_thread(entry_t entry, void* data) {
	thread_t *t = (thread_t*)kmalloc(sizeof(thread_t));
	if (t == 0) return 0;

	void* stack = region_alloc(KPROC_STACK_SIZE, "Stack", 0);
	if (stack == 0) {
		kfree(t);
		return 0;
	}

	for (void* i = stack + PAGE_SIZE; i < stack + KPROC_STACK_SIZE; i += PAGE_SIZE) {
		uint32_t f = frame_alloc(1);
		if (f == 0) {
			region_free_unmap_free(stack);
			kfree(t);
			return 0;
		}
		pd_map_page(i, f, true);
	}

	t->stack_region = find_region(stack);

	t->ctx.esp = (uint32_t*)(t->stack_region->addr + t->stack_region->size);
	*(--t->ctx.esp) = (uint32_t)data;	// push second argument : data
	*(--t->ctx.esp) = (uint32_t)entry;	// push first argument : entry point
	*(--t->ctx.esp) = 0;		// push invalid return address (the run_thread function never returns)

	t->ctx.eip = (void(*)())run_thread;
	t->state = T_STATE_PAUSED;

	t->current_pd_d = get_kernel_pagedir();

	t->more_data = 0;	// free for use by L1 functions

	return t;
}

// ========== //
// SETUP CODE //
// ========== //

static void irq0_handler(registers_t *regs) {
	if (current_thread != 0)
		irq0_save_context_and_enter_scheduler(&current_thread->ctx);
}
void threading_setup(entry_t cont, void* arg) {
	set_pit_frequency(TASK_SWITCH_FREQUENCY);
	idt_set_irq_handler(IRQ0, irq0_handler);

	thread_t *t = new_thread(cont, arg);
	ASSERT(t != 0);

	resume_thread(t, false);

	run_scheduler();	// never returns
	ASSERT(false);
}

// ======================= //
// TASK STATE MANIPULATION //
// ======================= //

void yield() {
	if (current_thread == 0) {
		// might happen before threading is initialized
		// (but should not...)
		dbg_printf("Warning: probable deadlock.\n");
	} else {
		save_context_and_enter_scheduler(&current_thread->ctx);
	}
}

void pause() {
	bool st = disable_interrupts();

	current_thread->state = T_STATE_PAUSED;
	save_context_and_enter_scheduler(&current_thread->ctx);

	resume_interrupts(st);
}

void resume_thread(thread_t *thread, bool run_at_once) {
	bool st = disable_interrupts();

	if (thread->state == T_STATE_PAUSED) {
		thread->state = T_STATE_RUNNING;
		enqueue_thread(thread, false);
	}
	if (run_at_once) yield();

	resume_interrupts(st);
}

/* vim: set ts=4 sw=4 tw=0 noet :*/