aboutsummaryrefslogtreecommitdiff
path: root/kernel/l0/region.c
blob: a384a4df0189b90830a6f7e3f9b8ea691f053fc2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include <region.h>
#include <dbglog.h>
#include <frame.h>
#include <mutex.h>

typedef union region_descriptor {
	struct {
		union region_descriptor *next;
	} unused_descriptor;
	struct {
		void* addr;
		size_t size;
		union region_descriptor *next_by_size, *first_bigger;
		union region_descriptor *next_by_addr;
	} free;
	struct {
		region_info_t i;
		union region_descriptor *next_by_addr;
	} used;
} descriptor_t;

#define N_RESERVE_DESCRIPTORS 2		// always keep at least 2 unused descriptors

#define N_BASE_DESCRIPTORS 12		// pre-allocate memory for 12 descriptors
static descriptor_t base_descriptors[N_BASE_DESCRIPTORS];

static descriptor_t *first_unused_descriptor; 
uint32_t n_unused_descriptors;
static descriptor_t *first_free_region_by_addr, *first_free_region_by_size;
static descriptor_t *first_used_region;

STATIC_MUTEX(ra_mutex);	// region allocator mutex

// ========================================================= //
// HELPER FUNCTIONS FOR THE MANIPULATION OF THE REGION LISTS //
// ========================================================= //

static void add_unused_descriptor(descriptor_t *d) {
	n_unused_descriptors++;
	d->unused_descriptor.next = first_unused_descriptor;
	first_unused_descriptor = d;
}

static descriptor_t *get_unused_descriptor() {
	descriptor_t *r = first_unused_descriptor;
	if (r != 0) {
		first_unused_descriptor = r->unused_descriptor.next;
		n_unused_descriptors--;
	}
	return r;
}

static void remove_free_region(descriptor_t *d) {
	if (first_free_region_by_size == d) {
		first_free_region_by_size = d->free.next_by_size;
	} else {
		for (descriptor_t *i = first_free_region_by_size; i != 0; i = i->free.next_by_size) {
			if (i->free.next_by_size == d) {
				i->free.next_by_size = d->free.next_by_size;
				break;
			}
		}
	}
	if (first_free_region_by_addr == d) {
		first_free_region_by_addr = d->free.next_by_addr;
	} else {
		for (descriptor_t *i = first_free_region_by_addr; i != 0; i = i->free.next_by_addr) {
			if (i->free.next_by_addr == d) {
				i->free.next_by_addr = d->free.next_by_addr;
				break;
			}
		}
	}
}

static void add_free_region(descriptor_t *d) {
	/*dbg_printf("Add free region 0x%p - 0x%p\n", d->free.addr, d->free.size + d->free.addr);*/
	// Find position of region in address-ordered list
	// Possibly concatenate free region
	descriptor_t *i = first_free_region_by_addr;
	if (i == 0) {
		ASSERT(first_free_region_by_size == 0);
		first_free_region_by_addr = first_free_region_by_size = d;
		d->free.next_by_size = d->free.first_bigger = d->free.next_by_addr = 0;
		return;
	} else if (d->free.addr + d->free.size == i->free.addr) {
		// concatenate d . i
		remove_free_region(i);
		d->free.size += i->free.size;
		add_unused_descriptor(i);
		add_free_region(d);
		return;
	} else if (i->free.addr > d->free.addr) {
		// insert before i
		d->free.next_by_addr = i;
		first_free_region_by_addr = d;
	} else {
		while (i != 0) {
			ASSERT(d->free.addr > i->free.addr);
			if (i->free.addr + i->free.size == d->free.addr) {
				// concatenate i . d
				remove_free_region(i);
				i->free.size += d->free.size;
				add_unused_descriptor(d);
				add_free_region(i);
				return;
			} else if (i->free.next_by_addr == 0 || i->free.next_by_addr->free.addr > d->free.addr) {
				d->free.next_by_addr = i->free.next_by_addr;
				i->free.next_by_addr = d;
				break;
			} else if (d->free.addr + d->free.size == i->free.next_by_addr->free.addr) {
				// concatenate d . i->next_by_addr
				descriptor_t *j = i->free.next_by_addr;
				remove_free_region(j);
				d->free.size += j->free.size;
				add_unused_descriptor(j);
				add_free_region(d);
				return;
			} else {
				// continue
				i = i->free.next_by_addr;
			}
		}
	}
	// Now add it in size-ordered list
	i = first_free_region_by_size;
	ASSERT(i != 0);
	if (d->free.size <= i->free.size) {
		d->free.next_by_size = i;
		d->free.first_bigger = (i->free.size > d->free.size ? i : i->free.first_bigger);
		first_free_region_by_size = d;
	} else {
		while (i != 0) {
			ASSERT(d->free.size > i->free.size);
			if (i->free.next_by_size == 0) {
				d->free.next_by_size = 0;
				d->free.first_bigger = 0;
				i->free.next_by_size = d;
				if (d->free.size > i->free.size) i->free.first_bigger = d;
				break;
			} else if (i->free.next_by_size->free.size >= d->free.size) {
				d->free.next_by_size = i->free.next_by_size;
				d->free.first_bigger =
					(i->free.next_by_size->free.size > d->free.size
						? i->free.next_by_size
						: i->free.next_by_size->free.first_bigger);
				i->free.next_by_size = d;
				if (d->free.size > i->free.size) i->free.first_bigger = d;
				break;
			} else {
				// continue
				i = i->free.next_by_size;
			}
		}
	}
}

static descriptor_t *find_used_region(void* addr) {
	for (descriptor_t *i = first_used_region; i != 0; i = i->used.next_by_addr) {
		if (addr >= i->used.i.addr && addr < i->used.i.addr + i->used.i.size) return i;
		if (i->used.i.addr > addr) break;
	}
	return 0;
}

static void add_used_region(descriptor_t *d) {
	descriptor_t *i = first_used_region;
	ASSERT(i->used.i.addr < d->used.i.addr);	// first region by address is never free

	while (i != 0) {
		ASSERT(i->used.i.addr < d->used.i.addr);
		if (i->used.next_by_addr == 0 || i->used.next_by_addr->used.i.addr > d->used.i.addr) {
			d->used.next_by_addr = i->used.next_by_addr;
			i->used.next_by_addr = d;
			return;
		} else {
			i = i->used.next_by_addr;
		}
	}
	ASSERT(false);
}

static void remove_used_region(descriptor_t *d) {
	if (first_used_region == d) {
		first_used_region = d->used.next_by_addr;
	} else {
		for (descriptor_t *i = first_used_region; i != 0; i = i->used.next_by_addr) {
			if (i->used.i.addr > d->used.i.addr) break;
			if (i->used.next_by_addr == d) {
				i->used.next_by_addr = d->used.next_by_addr;
				break;
			}
		}
	}
}

// =============== //
// THE ACTUAL CODE //
// =============== //

void region_allocator_init(void* kernel_data_end) {
	n_unused_descriptors = 0;
	first_unused_descriptor = 0;
	for (int i = 0; i < N_BASE_DESCRIPTORS; i++) {
		add_unused_descriptor(&base_descriptors[i]);
	}

	descriptor_t *f0 = get_unused_descriptor();
	f0->free.addr = (void*)PAGE_ALIGN_UP(kernel_data_end);
	f0->free.size = ((void*)LAST_KERNEL_ADDR - f0->free.addr);
	f0->free.next_by_size = 0;
	f0->free.first_bigger = 0;
	first_free_region_by_size = first_free_region_by_addr = f0;

	descriptor_t *u0 = get_unused_descriptor();
	u0->used.i.addr = (void*)K_HIGHHALF_ADDR;
	u0->used.i.size = PAGE_ALIGN_UP(kernel_data_end) - K_HIGHHALF_ADDR;
	u0->used.i.type = REGION_T_KERNEL_BASE;
	u0->used.i.pf = 0;
	u0->used.next_by_addr = 0;
	first_used_region = u0;
}

static void region_free_inner(void* addr) {
	descriptor_t *d = find_used_region(addr);
	if (d == 0) return;

	region_info_t i = d->used.i;

	remove_used_region(d);
	d->free.addr = i.addr;
	d->free.size = i.size;
	add_free_region(d);
}
void region_free(void* addr) {
	mutex_lock(&ra_mutex);
	region_free_inner(addr);
	mutex_unlock(&ra_mutex);
}

static void* region_alloc_inner(size_t size, uint32_t type, page_fault_handler_t pf, bool use_reserve) {
	size = PAGE_ALIGN_UP(size);

	for (descriptor_t *i = first_free_region_by_size; i != 0; i = i->free.first_bigger) {
		if (i->free.size >= size) {
			// region i is the one we want to allocate in
			descriptor_t *x = 0;
			if (i->free.size > size) {
				if (n_unused_descriptors <= N_RESERVE_DESCRIPTORS && !use_reserve) {
					return 0;
				}

				// this assert basically means that the allocation function
				// is called less than N_RESERVE_DESCRIPTORS times with
				// the use_reserve flag before more descriptors
				// are allocated.
				x = get_unused_descriptor();
				ASSERT(x != 0);

				x->free.size = i->free.size - size;
				if (size >= 0x4000) {
					x->free.addr = i->free.addr + size;
				} else {
					x->free.addr = i->free.addr;
					i->free.addr += x->free.size;
				}
			}
			// do the allocation
			remove_free_region(i);
			if (x != 0) add_free_region(x);

			void* addr = i->free.addr;
			i->used.i.addr = addr;
			i->used.i.size = size;
			i->used.i.type = type;
			i->used.i.pf = pf;
			add_used_region(i);

			return addr;
		}
	}
	return 0;	//No big enough block found
}

void* region_alloc(size_t size, uint32_t type, page_fault_handler_t pf) {
	void* result = 0;
	mutex_lock(&ra_mutex);

	if (n_unused_descriptors <= N_RESERVE_DESCRIPTORS) {
		uint32_t frame = frame_alloc(1);
		if (frame == 0) goto try_anyway;

		void* descriptor_region = region_alloc_inner(PAGE_SIZE, REGION_T_DESCRIPTORS, 0, true);
		ASSERT(descriptor_region != 0);

		int error = pd_map_page(descriptor_region, frame, 1);
		if (error) {
			// this can happen if we weren't able to allocate a frame for
			// a new pagetable
			frame_free(frame, 1);
			region_free_inner(descriptor_region);
			goto try_anyway;
		}
		
		for (descriptor_t *d = (descriptor_t*)descriptor_region;
				(void*)(d+1) <= (descriptor_region + PAGE_SIZE);
				d++) {
			add_unused_descriptor(d);
		}
	}
	try_anyway:
	// even if we don't have enough unused descriptors, we might find
	// a free region that has exactly the right size and therefore
	// does not require splitting, so we try the allocation in all cases
	result = region_alloc_inner(size, type, pf, false);

	mutex_unlock(&ra_mutex);
	return result;
}

region_info_t *find_region(void* addr) {
	region_info_t *r = 0;
	mutex_lock(&ra_mutex);

	descriptor_t *d = find_used_region(addr);
	if (d != 0) r = &d->used.i;

	mutex_unlock(&ra_mutex);
	return r;
}

// ========================================================= //
// HELPER FUNCTIONS : SIMPLE PF HANDLERS ; FREEING FUNCTIONS //
// ========================================================= //

void default_allocator_pf_handler(pagedir_t *pd, struct region_info *r, void* addr) {
	ASSERT(pd_get_frame(addr) == 0);	// if error is of another type (RO, protected), we don't do anyting

	uint32_t f = frame_alloc(1);
	if (f == 0) PANIC("Out Of Memory");

	int error = pd_map_page(addr, f, 1);
	if (error) PANIC("Could not map frame (OOM)");
}

void region_free_unmap_free(void* ptr) {
	region_info_t *i = find_region(ptr);
	ASSERT(i != 0);

	for (void* x = i->addr; x < i->addr + i->size; x += PAGE_SIZE) {
		uint32_t f = pd_get_frame(x);
		if (f != 0) {
			pd_unmap_page(x);
			frame_free(f, 1);
		}
	}
	region_free(ptr);
}

void region_free_unmap(void* ptr) {
	region_info_t *i = find_region(ptr);
	ASSERT(i != 0);

	for (void* x = i->addr; x < i->addr + i->size; x += PAGE_SIZE) {
		pd_unmap_page(x);
	}
	region_free(ptr);
}

// =========================== //
// DEBUG LOG PRINTING FUNCTION //
// =========================== //

void dbg_print_region_stats() {
	mutex_lock(&ra_mutex);

	dbg_printf("/ Free kernel regions, by address:\n");
	for (descriptor_t *d = first_free_region_by_addr; d != 0; d = d->free.next_by_addr) {
		dbg_printf("| 0x%p - 0x%p\n", d->free.addr, d->free.addr + d->free.size);
		ASSERT(d != d->free.next_by_addr);
	}
	dbg_printf("- Free kernel regions, by size:\n");
	for (descriptor_t *d = first_free_region_by_size; d != 0; d = d->free.next_by_size) {
		dbg_printf("| 0x%p - 0x%p\n", d->free.addr, d->free.addr + d->free.size);
		ASSERT(d != d->free.next_by_size);
	}
	dbg_printf("- Used kernel regions:\n");
	for (descriptor_t *d = first_used_region; d != 0; d = d->used.next_by_addr) {
		dbg_printf("| 0x%p - 0x%p", d->used.i.addr, d->used.i.addr + d->used.i.size);
		if (d->used.i.type & REGION_T_KERNEL_BASE)	dbg_printf("  Kernel code & base data");
		if (d->used.i.type & REGION_T_DESCRIPTORS)	dbg_printf("  Region descriptors");
		if (d->used.i.type & REGION_T_CORE_HEAP) 	dbg_printf("  Core heap");
		if (d->used.i.type & REGION_T_KPROC_HEAP)	dbg_printf("  Kernel process heap");
		if (d->used.i.type & REGION_T_KPROC_STACK)	dbg_printf("  Kernel process stack");
		if (d->used.i.type & REGION_T_PROC_KSTACK)	dbg_printf("  Process kernel stack");
		if (d->used.i.type & REGION_T_CACHE)		dbg_printf("  Cache");
		if (d->used.i.type & REGION_T_HW)			dbg_printf("  Hardware");
		dbg_printf("\n");
		ASSERT(d != d->used.next_by_addr);
	}
	dbg_printf("\\\n");

	mutex_unlock(&ra_mutex);
}

/* vim: set ts=4 sw=4 tw=0 noet :*/