1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
#include <multiboot.h>
#include <config.h>
#include <dbglog.h>
#include <sys.h>
#include <gdt.h>
#include <idt.h>
#include <frame.h>
#include <paging.h>
#include <region.h>
#include <slab_alloc.h>
extern char k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff
void breakpoint_handler(registers_t *regs) {
dbg_printf("Breakpoint! (int3)\n");
BOCHS_BREAKPOINT;
}
void* page_alloc_fun_for_kmalloc(size_t bytes) {
void* addr = region_alloc(bytes, REGION_T_CORE_HEAP, default_allocator_pf_handler);
dbg_printf("[alloc 0x%p for kmalloc : %p]\n", bytes, addr);
return addr;
}
slab_type_t slab_sizes[] = {
{ "8B obj", 8, 2 },
{ "16B obj", 16, 2 },
{ "32B obj", 32, 2 },
{ "64B obj", 64, 4 },
{ "128B obj", 128, 4 },
{ "256B obj", 256, 4 },
{ "512B obj", 512, 8 },
{ "1KB obj", 1024, 8 },
{ "2KB obj", 2048, 16 },
{ "4KB obj", 4096, 16 },
{ 0, 0, 0 }
};
void kmain(struct multiboot_info_t *mbd, int32_t mb_magic) {
dbglog_setup();
dbg_printf("Hello, kernel World!\n");
dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION);
ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC);
gdt_init(); dbg_printf("GDT set up.\n");
idt_init(); dbg_printf("IDT set up.\n");
idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler);
// asm volatile("int $0x3"); // test breakpoint
size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024);
dbg_printf("Total ram: %d Kb\n", total_ram / 1024);
// used for allocation of data structures before malloc is set up
// a pointer to this pointer is passed to the functions that might have
// to allocate memory ; they just increment it of the allocated quantity
void* kernel_data_end = &k_end_addr;
frame_init_allocator(total_ram, &kernel_data_end);
dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end);
dbg_print_frame_stats();
paging_setup(kernel_data_end);
dbg_printf("Paging seems to be working!\n");
BOCHS_BREAKPOINT;
region_allocator_init(kernel_data_end);
dbg_print_region_stats();
void* p = region_alloc(0x1000, REGION_T_HW, 0);
dbg_printf("Allocated one-page region: 0x%p\n", p);
dbg_print_region_stats();
void* q = region_alloc(0x1000, REGION_T_HW, 0);
dbg_printf("Allocated one-page region: 0x%p\n", q);
dbg_print_region_stats();
void* r = region_alloc(0x2000, REGION_T_HW, 0);
dbg_printf("Allocated two-page region: 0x%p\n", r);
dbg_print_region_stats();
void* s = region_alloc(0x10000, REGION_T_CORE_HEAP, 0);
dbg_printf("Allocated 16-page region: 0x%p\n", s);
dbg_print_region_stats();
region_free(p);
dbg_printf("Freed region 0x%p\n", p);
dbg_print_region_stats();
region_free(q);
dbg_printf("Freed region 0x%p\n", q);
dbg_print_region_stats();
region_free(r);
dbg_printf("Freed region 0x%p\n", r);
dbg_print_region_stats();
region_free(s);
dbg_printf("Freed region 0x%p\n", s);
dbg_print_region_stats();
BOCHS_BREAKPOINT;
// allocate a big region and try to write into it
const size_t n = 200;
void* p0 = region_alloc(n * PAGE_SIZE, REGION_T_HW, default_allocator_pf_handler);
for (size_t i = 0; i < n; i++) {
uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE);
dbg_printf("[%i : ", i);
x[0] = 12;
dbg_printf(" : .");
x[1] = (i * 20422) % 122;
dbg_printf("]\n", i);
}
BOCHS_BREAKPOINT;
// unmap memory
for (size_t i = 0; i < n; i++) {
void* p = p0 + i * PAGE_SIZE;
uint32_t *x = (uint32_t*)p;
ASSERT(x[1] == (i * 20422) % 122);
uint32_t f = pd_get_frame(p);
ASSERT(f != 0);
pd_unmap_page(p);
ASSERT(pd_get_frame(p) == 0);
frame_free(f, 1);
}
region_free(s);
BOCHS_BREAKPOINT;
// Test slab allocator !
mem_allocator_t *a =
create_slab_allocator(slab_sizes, page_alloc_fun_for_kmalloc,
region_free_unmap_free);
dbg_printf("Created slab allocator at 0x%p\n", a);
dbg_print_region_stats();
const int m = 200;
uint16_t** ptr = slab_alloc(a, m * sizeof(uint32_t));
for (int i = 0; i < m; i++) {
size_t s = 1 << ((i * 7) % 11 + 2);
ptr[i] = (uint16_t*)slab_alloc(a, s);
ASSERT((void*)ptr[i] >= kernel_data_end && (size_t)ptr[i] < 0xFFC00000);
*ptr[i] = ((i * 211) % 1024);
dbg_printf("Alloc %i : 0x%p\n", s, ptr[i]);
}
dbg_print_region_stats();
for (int i = 0; i < m; i++) {
for (int j = i; j < m; j++) {
ASSERT(*ptr[j] == (j * 211) % 1024);
}
slab_free(a, ptr[i]);
}
dbg_print_region_stats();
dbg_printf("Destroying slab allocator...\n");
destroy_slab_allocator(a);
dbg_print_region_stats();
PANIC("Reached kmain end! Falling off the edge.");
}
/* vim: set ts=4 sw=4 tw=0 noet :*/
|