aboutsummaryrefslogtreecommitdiff
path: root/src/kernel/core/thread.c
blob: 4e15c0e372ac3879a22c409409f12bcf646df68e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#include <thread.h>
#include <malloc.h>
#include <dbglog.h>
#include <idt.h>
#include <gdt.h>

#include <hashtbl.h>

#include <frame.h>
#include <paging.h>
#include <worker.h>
#include <process.h>
#include <freemem.h>
#include <prng.h>

void save_context_and_enter_scheduler(saved_context_t *ctx);
void resume_context(saved_context_t *ctx);

thread_t *current_thread = 0;

static hashtbl_t *waiters = 0;			// threads waiting on a ressource
STATIC_MUTEX(waiters_mutex);

// ====================== //
// THE PROGRAMMABLE TIMER //
// ====================== //

void set_pit_frequency(uint32_t freq) {
   uint32_t divisor = 1193180 / freq;
   ASSERT(divisor < 65536);	// must fit on 16 bits

   uint8_t l = (divisor & 0xFF);
   uint8_t h = ((divisor >> 8) & 0xFF);

   outb(0x43, 0x36);
   outb(0x40, l);
   outb(0x40, h);
}

// =========================== //
// CRITICAL SECTION MANAGEMENT //
// =========================== //

int enter_critical(int level) {
	asm volatile("cli");

	if (current_thread == 0) return CL_EXCL;

	int prev_level = current_thread->critical_level;
	if (level > prev_level) current_thread->critical_level = level;
	
	if (current_thread->critical_level < CL_NOINT) asm volatile("sti");

	return prev_level;
}

void exit_critical(int prev_level) {
	asm volatile("cli");

	if (current_thread == 0) return;

	if (prev_level < current_thread->critical_level) current_thread->critical_level = prev_level;
	if (current_thread->critical_level < CL_NOINT) asm volatile("sti");
}

// ================== //
// THE TASK SCHEDULER //
// ================== //

static thread_t *queue_first_thread = 0, *queue_last_thread = 0;

void enqueue_thread(thread_t *t, bool just_ran) {
	ASSERT(t->state == T_STATE_RUNNING);
	if (queue_first_thread == 0) {
		queue_first_thread = queue_last_thread = t;
		t->next_in_queue = 0;
	} else if (just_ran) {
		t->next_in_queue = 0;
		queue_last_thread->next_in_queue = t;
		queue_last_thread = t;
	} else {
		t->next_in_queue = queue_first_thread;
		queue_first_thread = t;
	}
}

thread_t* dequeue_thread() {
	thread_t *t = queue_first_thread;
	if (t == 0) return 0;

	queue_first_thread = t->next_in_queue;
	if (queue_first_thread == 0) queue_last_thread = 0;

	return t;
}

void remove_thread_from_queue(thread_t *t) {
	if (queue_first_thread == t) {
		queue_first_thread = t->next_in_queue;
		if (queue_first_thread == 0) queue_last_thread = 0;
	} else {
		for (thread_t *it = queue_first_thread; it != 0; it = it->next_in_queue) {
			if (it->next_in_queue == t) {
				it->next_in_queue = t->next_in_queue;
				if (it->next_in_queue == 0) queue_last_thread = t;
				break;
			}
		}
	}
}

// ================ //
// THE TASKING CODE //
// ================ //

void run_scheduler() {
	// At this point, interrupts are disabled
	// This function is expected NEVER TO RETURN

	if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) {
		current_thread->last_ran = get_kernel_time();
		if (current_thread->proc) current_thread->proc->last_ran = current_thread->last_ran;
		enqueue_thread(current_thread, true);
	}
	current_thread = dequeue_thread();

	/*dbg_printf("[0x%p]\n", current_thread);*/

	if (current_thread != 0) {
		thread_t *ptr = current_thread;
		prng_add_entropy((uint8_t*)&ptr, sizeof(ptr));

		set_kernel_stack(current_thread->stack_region->addr + current_thread->stack_region->size);
		resume_context(&current_thread->ctx);
	} else {
		// Wait for an IRQ
		asm volatile("sti; hlt");
		// At this point an IRQ has happenned
		// and has been processed. Loop around. 
		run_scheduler();
	}
}

static void run_thread(void (*entry)(void*), void* data) {
	ASSERT(current_thread->state == T_STATE_RUNNING);

	dbg_printf("Begin thread 0x%p (in process %d)\n",
		current_thread, (current_thread->proc ? current_thread->proc->pid : 0));

	switch_pagedir(get_kernel_pagedir());

	exit_critical(CL_USER);

	entry(data);

	exit();
}
thread_t *new_thread(entry_t entry, void* data) {
	thread_t *t = (thread_t*)malloc(sizeof(thread_t));
	if (t == 0) return 0;

	void* stack = region_alloc(KPROC_STACK_SIZE + PAGE_SIZE, "Stack");
	if (stack == 0) {
		free(t);
		return 0;
	}
	void* stack_low = stack + PAGE_SIZE;
	void* stack_high = stack_low + KPROC_STACK_SIZE;

	for (void* i = stack_low; i < stack_high; i += PAGE_SIZE) {
		uint32_t f;
		int tries = 0;
		while ((f = frame_alloc(1)) == 0 && (tries++) < 3) {
			free_some_memory();
		}
		if (f == 0) {
			PANIC("TODO (OOM could not create kernel stack for new thread)");
		}

		bool map_ok = pd_map_page(i, f, true);
		if (!map_ok) {
			PANIC("TODO (OOM(2) could not create kernel stack for new thread)");
		}
	}

	t->stack_region = find_region(stack);
	ASSERT(stack_high == t->stack_region->addr + t->stack_region->size);

	t->ctx.esp = (uint32_t*)stack_high;
	*(--t->ctx.esp) = (uint32_t)data;	// push second argument : data
	*(--t->ctx.esp) = (uint32_t)entry;	// push first argument : entry point
	*(--t->ctx.esp) = 0;		// push invalid return address (the run_thread function never returns)

	t->ctx.eip = (void(*)())run_thread;
	t->state = T_STATE_LOADING;
	t->last_ran = 0;

	t->must_exit = false;

	t->current_pd_d = get_kernel_pagedir();
	t->critical_level = CL_EXCL;

	// used by user processes
	t->proc = 0;
	t->next_in_proc = 0;
	t->user_ex_handler = 0;

	return t;
}

void delete_thread(thread_t *t) {
	ASSERT(t->state == T_STATE_FINISHED);

	dbg_printf("Deleting thread 0x%p\n", t);

	region_free_unmap_free(t->stack_region->addr);
	free(t);
}

// ========== //
// SETUP CODE //
// ========== //

void irq0_handler(registers_t *regs, int crit_level) {
	notify_time_pass(1000000 / TASK_SWITCH_FREQUENCY);

	exit_critical(crit_level);

	if (current_thread != 0 && current_thread->critical_level == CL_USER) {
		save_context_and_enter_scheduler(&current_thread->ctx);
	}
}
void threading_setup(entry_t cont, void* arg) {
	waiters = create_hashtbl(id_key_eq_fun, id_hash_fun, 0);
	ASSERT(waiters != 0);

	set_pit_frequency(TASK_SWITCH_FREQUENCY);
	// no need to set irq0 handler

	thread_t *t = new_thread(cont, arg);
	ASSERT(t != 0);

	start_thread(t);

	exit_critical(CL_USER);

	run_scheduler();	// never returns
	ASSERT(false);
}

// ======================= //
// TASK STATE MANIPULATION //
// ======================= //

void start_thread(thread_t *t) {
	ASSERT(t->state == T_STATE_LOADING);

	t->state = T_STATE_RUNNING;

	{	int st = enter_critical(CL_NOINT);

		enqueue_thread(t, false);

		exit_critical(st);	}
}

void yield() {
	ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);

	save_context_and_enter_scheduler(&current_thread->ctx);
}

bool wait_on(void* x) {
	return wait_on_many(&x, 1);
}

bool wait_on_many(void** x, size_t n) {
	ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);
	ASSERT(n > 0);

	mutex_lock(&waiters_mutex);

	//  ---- Check we can wait on all the requested objects
	bool ok = true;
	for (size_t i = 0; ok && i < n; i++) {
		void* prev_th = hashtbl_find(waiters, x[i]);
		if (prev_th == 0) {
			bool add_ok = hashtbl_add(waiters, x[i], (void*)1);
			if (!add_ok) {
				ok = false;
			}
		} else if (prev_th != (void*)1) {
			ok = false;
		}
	}
	if (!ok) {
		mutex_unlock(&waiters_mutex);
		return false;
	}

	//  ---- Set ourselves as the waiting thread for all the requested objets
	int st = enter_critical(CL_NOSWITCH);

	for (size_t i = 0; i < n; i++) {
		ASSERT(hashtbl_change(waiters, x[i], current_thread));
	}

	//  ---- Go to sleep
	mutex_unlock(&waiters_mutex);

	current_thread->state = T_STATE_PAUSED;
	save_context_and_enter_scheduler(&current_thread->ctx);

	//  ---- Remove ourselves from the list
	mutex_lock(&waiters_mutex);

	for (size_t i = 0; i < n; i++) {
		ASSERT(hashtbl_change(waiters, x[i], (void*)1));
	}

	mutex_unlock(&waiters_mutex);
	exit_critical(st);

	//  ---- Check that we weren't waked up because of a kill request
	if (current_thread->must_exit) return false;

	return true;
}

void usleep(int usecs) {
	if (current_thread == 0) return;

	void resume_on_v(void* x) {
		resume_on(x);
	}
	bool ok = worker_push_in(usecs, resume_on_v, current_thread);

	if (ok) wait_on(current_thread);
}

void exit() {
	void exit_cleanup_task(void* v) {
		thread_t *t = (thread_t*)v;

		if (t->proc == 0) {
			// stand alone thread, can be deleted safely
			delete_thread(t);
		} else {
			// call specific routine from process code
			process_thread_exited(t);
		}
	}

	int st = enter_critical(CL_NOSWITCH);
	// the critical section here does not guarantee that worker_push will return immediately
	// (it may switch before adding the delete_thread task), but once the task is added
	// no other switch may happen, therefore this thread will not get re-enqueued

	dbg_printf("Thread 0x%p exiting.\n", current_thread);

	worker_push(exit_cleanup_task, current_thread);

	current_thread->state = T_STATE_FINISHED;
	exit_critical(st);

	yield();	// expected never to return!
	ASSERT(false);
}

bool resume_on(void* x) {
	thread_t *thread;

	bool ret = false;

	mutex_lock(&waiters_mutex);
	int st = enter_critical(CL_NOINT);

	thread = hashtbl_find(waiters, x);

	if (thread != 0 && thread != (void*)1) {
		if (thread->state == T_STATE_PAUSED) {
			thread->state = T_STATE_RUNNING;

			enqueue_thread(thread, false);

			ret = true;
		}
	}

	mutex_unlock(&waiters_mutex);
	exit_critical(st);

	return ret;
}

void kill_thread(thread_t *thread) {
	ASSERT(thread != current_thread);

	int st = enter_critical(CL_NOSWITCH);

	thread->must_exit = true;

	int i = 0;
	while (thread->state != T_STATE_FINISHED) {
		if (thread->state == T_STATE_PAUSED) {
			thread->state = T_STATE_RUNNING;
			enqueue_thread(thread, false);
		}
		yield();
		if (i++ > 100) dbg_printf("Thread 0x%p must be killed but will not exit.\n", thread);
	}

	exit_critical(st);
}

/* vim: set ts=4 sw=4 tw=0 noet :*/