1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
#include <thread.h>
#include <malloc.h>
#include <dbglog.h>
#include <idt.h>
#include <gdt.h>
#include <hashtbl.h>
#include <frame.h>
#include <paging.h>
#include <worker.h>
#include <process.h>
#include <freemem.h>
#include <prng.h>
void save_context_and_enter_scheduler(saved_context_t *ctx);
void resume_context(saved_context_t *ctx);
thread_t *current_thread = 0;
static hashtbl_t *waiters = 0; // threads waiting on a ressource
STATIC_MUTEX(waiters_mutex);
// ====================== //
// THE PROGRAMMABLE TIMER //
// ====================== //
void set_pit_frequency(uint32_t freq) {
uint32_t divisor = 1193180 / freq;
ASSERT(divisor < 65536); // must fit on 16 bits
uint8_t l = (divisor & 0xFF);
uint8_t h = ((divisor >> 8) & 0xFF);
outb(0x43, 0x36);
outb(0x40, l);
outb(0x40, h);
}
// =========================== //
// CRITICAL SECTION MANAGEMENT //
// =========================== //
int enter_critical(int level) {
asm volatile("cli");
if (current_thread == 0) return CL_EXCL;
int prev_level = current_thread->critical_level;
if (level > prev_level) current_thread->critical_level = level;
if (current_thread->critical_level < CL_NOINT) asm volatile("sti");
return prev_level;
}
void exit_critical(int prev_level) {
asm volatile("cli");
if (current_thread == 0) return;
if (prev_level < current_thread->critical_level) current_thread->critical_level = prev_level;
if (current_thread->critical_level < CL_NOINT) asm volatile("sti");
}
// ================== //
// THE TASK SCHEDULER //
// ================== //
static thread_t *queue_first_thread = 0, *queue_last_thread = 0;
void enqueue_thread(thread_t *t, bool just_ran) {
ASSERT(t->state == T_STATE_RUNNING);
if (queue_first_thread == 0) {
queue_first_thread = queue_last_thread = t;
t->next_in_queue = 0;
} else if (just_ran) {
t->next_in_queue = 0;
queue_last_thread->next_in_queue = t;
queue_last_thread = t;
} else {
t->next_in_queue = queue_first_thread;
queue_first_thread = t;
}
}
thread_t* dequeue_thread() {
thread_t *t = queue_first_thread;
if (t == 0) return 0;
queue_first_thread = t->next_in_queue;
if (queue_first_thread == 0) queue_last_thread = 0;
return t;
}
void remove_thread_from_queue(thread_t *t) {
if (queue_first_thread == t) {
queue_first_thread = t->next_in_queue;
if (queue_first_thread == 0) queue_last_thread = 0;
} else {
for (thread_t *it = queue_first_thread; it != 0; it = it->next_in_queue) {
if (it->next_in_queue == t) {
it->next_in_queue = t->next_in_queue;
if (it->next_in_queue == 0) queue_last_thread = t;
break;
}
}
}
}
// ================ //
// THE TASKING CODE //
// ================ //
void run_scheduler() {
// At this point, interrupts are disabled
// This function is expected NEVER TO RETURN
if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) {
current_thread->last_ran = get_kernel_time();
if (current_thread->proc) current_thread->proc->last_ran = current_thread->last_ran;
enqueue_thread(current_thread, true);
}
current_thread = dequeue_thread();
if (current_thread != 0) {
thread_t *ptr = current_thread;
prng_add_entropy((uint8_t*)&ptr, sizeof(ptr));
set_kernel_stack(current_thread->stack_region->addr + current_thread->stack_region->size);
resume_context(¤t_thread->ctx);
} else {
// Wait for an IRQ
asm volatile("sti; hlt");
// At this point an IRQ has happenned
// and has been processed. Loop around.
run_scheduler();
}
}
static void run_thread(void (*entry)(void*), void* data) {
ASSERT(current_thread->state == T_STATE_RUNNING);
dbg_printf("Begin thread 0x%p (in process %d)\n",
current_thread, (current_thread->proc ? current_thread->proc->pid : 0));
switch_pagedir(get_kernel_pagedir());
asm volatile("sti");
entry(data);
exit();
}
thread_t *new_thread(entry_t entry, void* data) {
thread_t *t = (thread_t*)malloc(sizeof(thread_t));
if (t == 0) return 0;
void* stack = region_alloc(KPROC_STACK_SIZE + PAGE_SIZE, "Stack", pf_handler_stackoverflow);
if (stack == 0) {
free(t);
return 0;
}
void* stack_low = stack + PAGE_SIZE;
void* stack_high = stack_low + KPROC_STACK_SIZE;
for (void* i = stack_low; i < stack_high; i += PAGE_SIZE) {
uint32_t f;
int tries = 0;
while ((f = frame_alloc(1)) == 0 && (tries++) < 3) {
free_some_memory();
}
if (f == 0) {
PANIC("TODO (OOM could not create kernel stack for new thread)");
}
bool map_ok = pd_map_page(i, f, true);
if (!map_ok) {
PANIC("TODO (OOM(2) could not create kernel stack for new thread)");
}
}
t->stack_region = find_region(stack);
ASSERT(stack_high == t->stack_region->addr + t->stack_region->size);
t->ctx.esp = (uint32_t*)stack_high;
*(--t->ctx.esp) = (uint32_t)data; // push second argument : data
*(--t->ctx.esp) = (uint32_t)entry; // push first argument : entry point
*(--t->ctx.esp) = 0; // push invalid return address (the run_thread function never returns)
t->ctx.eip = (void(*)())run_thread;
t->state = T_STATE_LOADING;
t->last_ran = 0;
t->waiting_on = 0;
t->must_exit = false;
t->current_pd_d = get_kernel_pagedir();
t->critical_level = CL_USER;
// used by user processes
t->proc = 0;
t->next_in_proc = 0;
t->user_ex_handler = 0;
return t;
}
static void delete_thread(thread_t *t) {
dbg_printf("Deleting thread 0x%p\n", t);
if (t->proc != 0)
process_thread_deleted(t);
region_free_unmap_free(t->stack_region->addr);
free(t);
}
// ========== //
// SETUP CODE //
// ========== //
static void irq0_handler(registers_t *regs) {
notify_time_pass(1000000 / TASK_SWITCH_FREQUENCY);
if (current_thread != 0 && current_thread->critical_level == CL_USER) {
save_context_and_enter_scheduler(¤t_thread->ctx);
}
}
void threading_setup(entry_t cont, void* arg) {
waiters = create_hashtbl(id_key_eq_fun, id_hash_fun, 0);
ASSERT(waiters != 0);
set_pit_frequency(TASK_SWITCH_FREQUENCY);
idt_set_irq_handler(IRQ0, irq0_handler);
thread_t *t = new_thread(cont, arg);
ASSERT(t != 0);
start_thread(t);
exit_critical(CL_USER);
run_scheduler(); // never returns
ASSERT(false);
}
// ======================= //
// TASK STATE MANIPULATION //
// ======================= //
void start_thread(thread_t *t) {
ASSERT(t->state == T_STATE_LOADING);
t->state = T_STATE_RUNNING;
{ int st = enter_critical(CL_NOINT);
enqueue_thread(t, false);
exit_critical(st); }
}
void yield() {
ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);
save_context_and_enter_scheduler(¤t_thread->ctx);
}
bool wait_on(void* x) {
ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);
mutex_lock(&waiters_mutex);
void* prev_th = hashtbl_find(waiters, x);
if (prev_th == 0) {
bool add_ok = hashtbl_add(waiters, x, (void*)1);
if (!add_ok) return false; // should not happen to often, I hope
} else if (prev_th != (void*)1) {
mutex_unlock(&waiters_mutex);
return false;
}
int st = enter_critical(CL_NOSWITCH);
if (current_thread->must_exit) return false;
current_thread->waiting_on = x;
ASSERT(hashtbl_change(waiters, x, current_thread));
mutex_unlock(&waiters_mutex);
current_thread->state = T_STATE_PAUSED;
save_context_and_enter_scheduler(¤t_thread->ctx);
exit_critical(st);
if (current_thread->must_exit) return false;
return true;
}
void usleep(int usecs) {
if (current_thread == 0) return;
void resume_on_v(void* x) {
resume_on(x);
}
bool ok = worker_push_in(usecs, resume_on_v, current_thread);
if (ok) wait_on(current_thread);
}
void exit() {
void delete_thread_v(void* v) {
delete_thread((thread_t*)v);
}
int st = enter_critical(CL_NOSWITCH);
// the critical section here does not guarantee that worker_push will return immediately
// (it may switch before adding the delete_thread task), but once the task is added
// no other switch may happen, therefore this thread will not get re-enqueued
dbg_printf("Thread 0x%p exiting.\n", current_thread);
worker_push(delete_thread_v, current_thread);
current_thread->state = T_STATE_FINISHED;
exit_critical(st);
yield(); // expected never to return!
ASSERT(false);
}
bool resume_on(void* x) {
thread_t *thread;
{ mutex_lock(&waiters_mutex);
thread = hashtbl_find(waiters, x);
hashtbl_change(waiters, x, (void*)1);
mutex_unlock(&waiters_mutex); }
if (thread == 0 || thread == (void*)1) return false;
{ int st = enter_critical(CL_NOINT);
ASSERT(thread->state == T_STATE_PAUSED);
thread->state = T_STATE_RUNNING;
thread->waiting_on = 0;
enqueue_thread(thread, false);
exit_critical(st); }
return true;
}
void kill_thread(thread_t *thread) {
ASSERT(thread != current_thread);
int st = enter_critical(CL_NOSWITCH);
thread->must_exit = true;
int i = 0;
while (thread->state != T_STATE_FINISHED) {
if (thread->state == T_STATE_PAUSED) {
resume_on(thread->waiting_on);
}
yield();
if (i++ > 100) dbg_printf("Thread 0x%p must be killed but will not exit.\n", thread);
}
exit_critical(st);
}
/* vim: set ts=4 sw=4 tw=0 noet :*/
|