1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
#include <paging.h>
#include <frame.h>
#include <idt.h>
#include <dbglog.h>
#include <region.h>
#include <thread.h>
#include <malloc.h>
#include <freemem.h>
#include <string.h>
#define PAGE_OF_ADDR(x) (((size_t)(x) >> PAGE_SHIFT) % N_PAGES_IN_PT)
#define PT_OF_ADDR(x) ((size_t)(x) >> (PAGE_SHIFT + PT_SHIFT))
typedef struct page_table {
uint32_t page[1024];
} pagetable_t;
struct page_directory {
uint32_t phys_addr; // physical address of page directory
// to modify a page directory, we first map it
// then we can use mirroring to edit it
// (the last 4M of the address space are mapped to the PD itself)
user_pf_handler_t user_pfh;
void* user_pfh_data;
};
// access kernel page directory page defined in loader.s
// (this is a correct higher-half address)
extern pagetable_t kernel_pd;
// pre-allocate a page table so that we can map the first 4M of kernel memory
static pagetable_t __attribute__((aligned(PAGE_SIZE))) kernel_pt0;
extern char kernel_stack_protector;
static pagedir_t kernel_pd_d;
#define current_pt ((pagetable_t*)PD_MIRROR_ADDR)
#define current_pd ((pagetable_t*)(PD_MIRROR_ADDR + (N_PAGES_IN_PT-1)*PAGE_SIZE))
void page_fault_handler(registers_t *regs) {
void* vaddr;
asm volatile("movl %%cr2, %0":"=r"(vaddr));
bool is_user = ((regs->err_code & PF_USER_BIT) != 0);
pagedir_t *pd = get_current_pagedir();
if (is_user) {
if (regs->eflags & EFLAGS_IF) asm volatile("sti");
// remark : sti should always be executed, it is stupid to run user code with interrupts disabled
if ((size_t)vaddr >= K_HIGHHALF_ADDR) {
ASSERT(current_thread->user_ex_handler != 0);
current_thread->user_ex_handler(regs);
} else {
if (pd->user_pfh == 0) {
dbg_printf("Error: usermode page fault (0x%p) on PD with no user PFH.\n", vaddr);
dbg_printf("PD: 0x%p, kernel PD: 0x%p\n", get_current_pagedir(), get_kernel_pagedir());
dbg_dump_registers(regs);
PANIC("Un-handlable usermode PF.");
}
ASSERT(pd->user_pfh != 0);
pd->user_pfh(pd->user_pfh_data, regs, vaddr);
}
} else {
//TODO: instead of panicing, we should try to recover from the exception (?)
if ((size_t)vaddr < PAGE_SIZE) {
dbg_printf("Null pointer dereference in kernel code (0x%p)\n", vaddr);
dbg_dump_registers(regs);
PANIC("Null pointer dereference in kernel code.");
} else if ((size_t)vaddr < K_HIGHHALF_ADDR) {
if (pd->user_pfh == 0) {
dbg_printf("Userspace page fault at 0x%p, no handler declared\n", vaddr);
dbg_dump_registers(regs);
PANIC("Unhandled userspace page fault");
}
// userspace PF handlers should always be preemptible
if (regs->eflags & EFLAGS_IF) asm volatile("sti");
pd->user_pfh(pd->user_pfh_data, regs, vaddr);
} else {
uint32_t pt = PT_OF_ADDR(vaddr);
if (current_pd != &kernel_pd && current_pd->page[pt] != kernel_pd.page[pt]) {
current_pd->page[pt] = kernel_pd.page[pt];
invlpg(¤t_pt[pt]);
return;
}
// from now on we are preemptible
if (regs->eflags & EFLAGS_IF) asm volatile("sti");
if (vaddr >= (void*)&kernel_stack_protector && vaddr < (void*)&kernel_stack_protector + PAGE_SIZE) {
dbg_printf("Kernel stack overflow at 0x%p\n", vaddr);
dbg_dump_registers(regs);
PANIC("Kernel stack overflow.");
}
if ((size_t)vaddr >= PD_MIRROR_ADDR) {
dbg_printf("Fault on access to mirrorred PD at 0x%p\n", vaddr);
dbg_dump_registers(regs);
PANIC("Unhandled kernel space page fault");
}
region_info_t *i = find_region(vaddr);
char* region = (i == 0 ? "non-exting" : i->type);
dbg_printf("Kernel pagefault in region with no handler at 0x%p (%s region)\n", vaddr, region);
dbg_dump_registers(regs);
PANIC("Unhandled kernel space page fault");
}
}
}
void paging_setup(void* kernel_data_end) {
size_t n_kernel_pages =
PAGE_ALIGN_UP((size_t)kernel_data_end - K_HIGHHALF_ADDR)/PAGE_SIZE;
ASSERT(n_kernel_pages <= 1024); // we use less than 4M for kernel
// setup kernel_pd_d structure
kernel_pd_d.phys_addr = (size_t)&kernel_pd - K_HIGHHALF_ADDR;
// setup kernel_pt0
ASSERT(PAGE_OF_ADDR(K_HIGHHALF_ADDR) == 0); // kernel is 4M-aligned
ASSERT(FIRST_KERNEL_PT == 768);
for (size_t i = 0; i < n_kernel_pages; i++) {
if ((i * PAGE_SIZE) + K_HIGHHALF_ADDR == (size_t)&kernel_stack_protector) {
kernel_pt0.page[i] = 0; // don't map kernel stack protector page
frame_free(i, 1);
} else {
kernel_pt0.page[i] = (i << PTE_FRAME_SHIFT) | PTE_PRESENT | PTE_RW | PTE_GLOBAL;
}
}
for (size_t i = n_kernel_pages; i < 1024; i++){
kernel_pt0.page[i] = 0;
}
// replace 4M mapping by kernel_pt0
kernel_pd.page[FIRST_KERNEL_PT] =
(((size_t)&kernel_pt0 - K_HIGHHALF_ADDR) & PAGE_MASK) | PTE_PRESENT | PTE_RW;
// set up mirroring
kernel_pd.page[N_PAGES_IN_PT-1] =
(((size_t)&kernel_pd - K_HIGHHALF_ADDR) & PAGE_MASK) | PTE_PRESENT | PTE_RW;
invlpg((void*)K_HIGHHALF_ADDR);
// paging already enabled in loader, nothing to do.
uint32_t cr4;
asm volatile("movl %%cr4, %0": "=r"(cr4));
cr4 &= ~(1<<4); // disable 4M pages (remove PSE bit in CR4)
cr4 |= (1<<7); // enable global PTE/PDE
asm volatile("movl %0, %%cr4":: "r"(cr4));
idt_set_ex_handler(EX_PAGE_FAULT, page_fault_handler);
}
pagedir_t *get_current_pagedir() {
if (current_thread == 0) return &kernel_pd_d;
return current_thread->current_pd_d;
}
pagedir_t *get_kernel_pagedir() {
return &kernel_pd_d;
}
void switch_pagedir(pagedir_t *pd) {
asm volatile("movl %0, %%cr3":: "r"(pd->phys_addr));
if (current_thread != 0) current_thread->current_pd_d = pd;
}
// ============================== //
// Mapping and unmapping of pages //
// ============================== //
uint32_t pd_get_entry(void* vaddr) {
uint32_t pt = PT_OF_ADDR(vaddr);
uint32_t page = PAGE_OF_ADDR(vaddr);
pagetable_t *pd = ((size_t)vaddr >= K_HIGHHALF_ADDR ? &kernel_pd : current_pd);
if (!(pd->page[pt] & PTE_PRESENT)) return 0;
if (!(current_pt[pt].page[page] & PTE_PRESENT)) return 0;
return current_pt[pt].page[page];
}
uint32_t pd_get_frame(void* vaddr) {
return pd_get_entry(vaddr) >> PTE_FRAME_SHIFT;
}
bool pd_map_page(void* vaddr, uint32_t frame_id, bool rw) {
const uint32_t pt = PT_OF_ADDR(vaddr);
const uint32_t page = PAGE_OF_ADDR(vaddr);
ASSERT((size_t)vaddr < PD_MIRROR_ADDR);
bool on_kernel_pd = (size_t)vaddr >= K_HIGHHALF_ADDR || current_thread == 0;
// pagedir_t *pdd = (on_kernel_pd ? &kernel_pd_d : current_thread->current_pd_d);
pagetable_t *pd = (on_kernel_pd ? &kernel_pd : current_pd);
int st = enter_critical(CL_NOINT);
if (!(pd->page[pt] & PTE_PRESENT)) {
uint32_t new_pt_frame = frame_alloc(1);
if (new_pt_frame == 0) {
exit_critical(st);
return false;
}
current_pd->page[pt] = pd->page[pt] =
(new_pt_frame << PTE_FRAME_SHIFT)
| PTE_PRESENT | PTE_RW
| ((size_t)vaddr < K_HIGHHALF_ADDR ? PTE_USER : 0);
invlpg(¤t_pt[pt]);
memset(¤t_pt[pt], 0, PAGE_SIZE);
}
current_pt[pt].page[page] =
(frame_id << PTE_FRAME_SHIFT) | PTE_PRESENT
| ((size_t)vaddr < K_HIGHHALF_ADDR ? PTE_USER : PTE_GLOBAL)
| (rw ? PTE_RW : 0);
invlpg(vaddr);
exit_critical(st);
return true;
}
void pd_unmap_page(void* vaddr) {
uint32_t pt = PT_OF_ADDR(vaddr);
uint32_t page = PAGE_OF_ADDR(vaddr);
pagetable_t *pd = ((size_t)vaddr >= K_HIGHHALF_ADDR ? &kernel_pd : current_pd);
if (!(pd->page[pt] & PTE_PRESENT)) return;
if (!(current_pt[pt].page[page] & PTE_PRESENT)) return;
current_pt[pt].page[page] = 0;
invlpg(vaddr);
// If the page table is completely empty we might want to free
// it, but we would actually lose a lot of time checking if
// the PT is really empty (since we don't store the
// number of used pages in each PT), so it's probably not worth it
}
// Creation and deletion of page directories
pagedir_t *create_pagedir(user_pf_handler_t pf, void* pfd) {
uint32_t pd_phys = 0;
pagedir_t *pd = 0;
void* temp = 0;
pd_phys = frame_alloc(1);
if (pd_phys == 0) goto error;
pd = (pagedir_t*)malloc(sizeof(pagedir_t));
if (pd == 0) goto error;
temp = region_alloc(PAGE_SIZE, "Temporary pagedir mapping");
if (temp == 0) goto error;
bool map_ok = pd_map_page(temp, pd_phys, true);
if (!map_ok) goto error;
pd->phys_addr = pd_phys * PAGE_SIZE;
pd->user_pfh = pf;
pd->user_pfh_data = pfd;
// initialize PD with zeroes
pagetable_t *pt = (pagetable_t*)temp;
for (size_t i = 0; i < N_PAGES_IN_PT; i++) {
pt->page[i] = 0;
}
// use kernel page tables
for(size_t i = FIRST_KERNEL_PT; i < N_PAGES_IN_PT-1; i++) {
pt->page[i] = kernel_pd.page[i];
}
// set up mirroring
pt->page[N_PAGES_IN_PT-1] = pd->phys_addr | PTE_PRESENT | PTE_RW;
region_free_unmap(temp);
return pd;
error:
if (pd_phys != 0) frame_free(pd_phys, 1);
if (pd != 0) free(pd);
if (temp != 0) region_free(temp);
return 0;
}
void delete_pagedir(pagedir_t *pd) {
pagedir_t *restore_pd = get_current_pagedir();
if (restore_pd == pd) restore_pd = &kernel_pd_d;
// make a copy of page directory on the stack
switch_pagedir(pd);
pagetable_t backup;
for (size_t i = 0; i < N_PAGES_IN_PT; i++) {
backup.page[i] = current_pd->page[i];
}
switch_pagedir(restore_pd);
// free the page tables
for (size_t i = 0; i < FIRST_KERNEL_PT; i++) {
if (backup.page[i] & PTE_PRESENT)
frame_free(backup.page[i] >> PTE_FRAME_SHIFT, 1);
}
// free the page directory page
uint32_t pd_phys = pd->phys_addr / PAGE_SIZE;
ASSERT(pd_phys == (backup.page[N_PAGES_IN_PT-1] >> PTE_FRAME_SHIFT));
frame_free(pd_phys, 1);
// free the pagedir_t structure
free(pd);
return;
}
/* vim: set ts=4 sw=4 tw=0 noet :*/
|