1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#include <multiboot.h>
#include <config.h>
#include <dbglog.h>
#include <sys.h>
#include <malloc.h>
#include <gdt.h>
#include <idt.h>
#include <frame.h>
#include <paging.h>
#include <region.h>
#include <kmalloc.h>
#include <thread.h>
#include <vfs.h>
#include <nullfs.h>
#include <slab_alloc.h>
#include <hashtbl.h>
#include <string.h>
extern const void k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff
void breakpoint_handler(registers_t *regs) {
dbg_printf("Breakpoint! (int3)\n");
BOCHS_BREAKPOINT;
}
void region_test1() {
void* p = region_alloc(0x1000, "Test region", 0);
dbg_printf("Allocated one-page region: 0x%p\n", p);
dbg_print_region_info();
void* q = region_alloc(0x1000, "Test region", 0);
dbg_printf("Allocated one-page region: 0x%p\n", q);
dbg_print_region_info();
void* r = region_alloc(0x2000, "Test region", 0);
dbg_printf("Allocated two-page region: 0x%p\n", r);
dbg_print_region_info();
void* s = region_alloc(0x10000, "Test region", 0);
dbg_printf("Allocated 16-page region: 0x%p\n", s);
dbg_print_region_info();
region_free(p);
dbg_printf("Freed region 0x%p\n", p);
dbg_print_region_info();
region_free(q);
dbg_printf("Freed region 0x%p\n", q);
dbg_print_region_info();
region_free(r);
dbg_printf("Freed region 0x%p\n", r);
dbg_print_region_info();
region_free(s);
dbg_printf("Freed region 0x%p\n", s);
dbg_print_region_info();
}
void region_test2() {
// allocate a big region and try to write into it
dbg_printf("Begin region test 2...");
const size_t n = 200;
void* p0 = region_alloc(n * PAGE_SIZE, "Test big region", default_allocator_pf_handler);
for (size_t i = 0; i < n; i++) {
uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE);
x[0] = 12;
x[1] = (i * 20422) % 122;
}
// unmap memory
for (size_t i = 0; i < n; i++) {
void* p = p0 + i * PAGE_SIZE;
uint32_t *x = (uint32_t*)p;
ASSERT(x[1] == (i * 20422) % 122);
uint32_t f = pd_get_frame(p);
ASSERT(f != 0);
pd_unmap_page(p);
ASSERT(pd_get_frame(p) == 0);
frame_free(f, 1);
}
region_free(p0);
dbg_printf("OK\n");
}
void kmalloc_test(void* kernel_data_end) {
// Test kmalloc !
dbg_print_region_info();
dbg_printf("Begin kmalloc test...\n");
const int m = 200;
uint16_t** ptr = malloc(m * sizeof(uint32_t));
for (int i = 0; i < m; i++) {
size_t s = 1 << ((i * 7) % 11 + 2);
ptr[i] = (uint16_t*)malloc(s);
ASSERT((void*)ptr[i] >= kernel_data_end && (size_t)ptr[i] < 0xFFC00000);
*ptr[i] = ((i * 211) % 1024);
}
dbg_printf("Fully allocated.\n");
dbg_print_region_info();
for (int i = 0; i < m; i++) {
for (int j = i; j < m; j++) {
ASSERT(*ptr[j] == (j * 211) % 1024);
}
free(ptr[i]);
}
free(ptr);
dbg_printf("Kmalloc test OK.\n");
dbg_print_region_info();
}
void test_hashtbl_1() {
// hashtable test
hashtbl_t *ht = create_hashtbl(str_key_eq_fun, str_hash_fun, 0, 0);
hashtbl_add(ht, "test1", "Hello, world [test1]");
hashtbl_add(ht, "test2", "Hello, world [test2]");
dbg_printf("ht[test1] = %s\n", hashtbl_find(ht, "test1"));
dbg_printf("ht[test] = %s\n", hashtbl_find(ht, "test"));
dbg_printf("ht[test2] = %s\n", hashtbl_find(ht, "test2"));
dbg_printf("adding test...\n");
hashtbl_add(ht, "test", "Forever alone");
dbg_printf("ht[test1] = %s\n", hashtbl_find(ht, "test1"));
dbg_printf("ht[test] = %s\n", hashtbl_find(ht, "test"));
dbg_printf("ht[test2] = %s\n", hashtbl_find(ht, "test2"));
dbg_printf("removing test1...\n");
hashtbl_remove(ht, "test1");
dbg_printf("ht[test1] = %s\n", hashtbl_find(ht, "test1"));
dbg_printf("ht[test] = %s\n", hashtbl_find(ht, "test"));
dbg_printf("ht[test2] = %s\n", hashtbl_find(ht, "test2"));
delete_hashtbl(ht, 0);
}
void test_hashtbl_2() {
hashtbl_t *ht = create_hashtbl(id_key_eq_fun, id_hash_fun, 0, 0);
hashtbl_add(ht, (void*)12, "Hello, world [12]");
hashtbl_add(ht, (void*)777, "Hello, world [777]");
dbg_printf("ht[12] = %s\n", hashtbl_find(ht, (void*)12));
dbg_printf("ht[144] = %s\n", hashtbl_find(ht, (void*)144));
dbg_printf("ht[777] = %s\n", hashtbl_find(ht, (void*)777));
dbg_printf("adding 144...\n");
hashtbl_add(ht, (void*)144, "Forever alone");
dbg_printf("ht[12] = %s\n", hashtbl_find(ht, (void*)12));
dbg_printf("ht[144] = %s\n", hashtbl_find(ht, (void*)144));
dbg_printf("ht[777] = %s\n", hashtbl_find(ht, (void*)777));
dbg_printf("removing 12...\n");
hashtbl_remove(ht, (void*)12);
dbg_printf("ht[12] = %s\n", hashtbl_find(ht, (void*)12));
dbg_printf("ht[144] = %s\n", hashtbl_find(ht, (void*)144));
dbg_printf("ht[777] = %s\n", hashtbl_find(ht, (void*)777));
delete_hashtbl(ht, 0);
}
void test_thread(void* a) {
for(int i = 0; i < 120; i++) {
dbg_printf("b");
for (int x = 0; x < 100000; x++) asm volatile("xor %%ebx, %%ebx":::"%ebx");
if (i % 8 == 0) yield();
}
}
void kernel_init_stage2(void* data);
void kmain(multiboot_info_t *mbd, int32_t mb_magic) {
// used for allocation of data structures before malloc is set up
// a pointer to this pointer is passed to the functions that might have
// to allocate memory ; they just increment it of the allocated quantity
void* kernel_data_end = (void*)&k_end_addr;
dbglog_setup();
dbg_printf("Hello, kernel world!\n");
dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION);
ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC);
// Rewrite multiboot header so that we are in higher half
// Also check that kernel_data_end is after all modules, otherwise
// we might overwrite something.
mbd->cmdline += K_HIGHHALF_ADDR;
size_t cmdline_end = mbd->cmdline + strlen((char*)mbd->cmdline);
void* cmdline_end_pa = (void*)((cmdline_end & 0xFFFFF000) + 0x1000);
if (cmdline_end_pa > kernel_data_end) kernel_data_end = cmdline_end_pa;
mbd->mods_addr += K_HIGHHALF_ADDR;
multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr;
for (unsigned i = 0; i < mbd->mods_count; i++) {
mods[i].mod_start += K_HIGHHALF_ADDR;
mods[i].mod_end += K_HIGHHALF_ADDR;
mods[i].string += K_HIGHHALF_ADDR;
void* mod_end_pa = (void*)((mods[i].mod_end & 0xFFFFF000) + 0x1000);
if (mod_end_pa > kernel_data_end)
kernel_data_end = mod_end_pa;
}
gdt_init(); dbg_printf("GDT set up.\n");
idt_init(); dbg_printf("IDT set up.\n");
idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler);
asm volatile("int $0x3"); // test breakpoint
size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024);
dbg_printf("Total ram: %d Kb\n", total_ram / 1024);
frame_init_allocator(total_ram, &kernel_data_end);
dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end);
dbg_print_frame_stats();
paging_setup(kernel_data_end);
dbg_printf("Paging seems to be working!\n");
BOCHS_BREAKPOINT;
region_allocator_init(kernel_data_end);
region_test1();
region_test2();
kmalloc_setup();
kmalloc_test(kernel_data_end);
// enter multi-threading mode
// interrupts are enabled at this moment, so all
// code run from now on should be preemtible (ie thread-safe)
threading_setup(kernel_init_stage2, mbd);
PANIC("Should never come here.");
}
void kernel_init_stage2(void* data) {
multiboot_info_t *mbd = (multiboot_info_t*)data;
dbg_print_region_info();
dbg_print_frame_stats();
test_hashtbl_1();
test_hashtbl_2();
thread_t *tb = new_thread(test_thread, 0);
resume_thread(tb, false);
for (int i = 0; i < 120; i++) {
dbg_printf("a");
for (int x = 0; x < 100000; x++) asm volatile("xor %%ebx, %%ebx":::"%ebx");
}
// Create devfs
register_nullfs_driver();
fs_t *devfs = make_fs("nullfs", 0, "cd");
ASSERT(devfs != 0);
nullfs_t *devfs_n = as_nullfs(devfs);
ASSERT(devfs_n != 0);
// Add kernel command line to devfs
{
dbg_printf("Kernel command line: '%s'\n", (char*)mbd->cmdline);
size_t len = strlen((char*)mbd->cmdline);
fs_handle_t* cmdline = fs_open(devfs, "/cmdline", FM_WRITE | FM_CREATE);
ASSERT(cmdline != 0);
ASSERT(file_write(cmdline, 0, len, (char*)mbd->cmdline) == len);
unref_file(cmdline);
}
// Populate devfs with files for kernel modules
ASSERT(fs_create(devfs, "/mod", FT_DIR));
multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr;
for (unsigned i = 0; i < mbd->mods_count; i++) {
char* modname = (char*)mods[i].string;
char* e = strchr(modname, ' ');
if (e != 0) (*e) = 0; // ignore arguments
char *b = strrchr(modname, '/');
if (b != 0) modname = b+1; // ignore path
char name[6 + strlen(b)];
strcpy(name, "/mod/");
strcpy(name+5, modname);
dbg_printf("Adding module to VFS: '%s'\n", name);
size_t len = mods[i].mod_end - mods[i].mod_start;
fs_handle_t* mod_f = fs_open(devfs, name, FM_WRITE | FM_CREATE);
ASSERT(mod_f != 0);
ASSERT(file_write(mod_f, 0, len, (char*)mods[i].mod_start) == len);
unref_file(mod_f);
}
// TEST : read /cmdline
dbg_printf("Trying to read /cmdline... ");
fs_handle_t *f = fs_open(devfs, "/cmdline", FM_READ);
ASSERT(f != 0);
char buf[256];
size_t l = file_read(f, 0, 255, buf);
ASSERT(l > 0);
buf[l] = 0;
unref_file(f);
dbg_printf("got '%s'.\n", buf);
//TODO :
// - (OK) populate devfs with information regarding kernel command line & modules
// - create user process with init module provided on command line
// - give it rights to devfs
// - launch it
// - just return, this thread is done
PANIC("Reached kmain end! Falling off the edge.");
}
/* vim: set ts=4 sw=4 tw=0 noet :*/
|