aboutsummaryrefslogtreecommitdiff
path: root/kernel/l0/paging.c
blob: 93cbc38e5a420414e2d54ef9213ae2157516f6fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include <paging.h>
#include <frame.h>
#include <idt.h>
#include <dbglog.h>
#include <region.h>
#include <mutex.h>
#include <task.h>

#define PAGE_OF_ADDR(x)		(((size_t)x >> PAGE_SHIFT) % N_PAGES_IN_PT)
#define PT_OF_ADDR(x)		((size_t)x >> (PAGE_SHIFT + PT_SHIFT))

#define PTE_PRESENT			(1<<0)
#define PTE_RW				(1<<1)
#define PTE_USER			(1<<2)
#define PTE_WRITE_THROUGH	(1<<3)
#define PTE_DISABLE_CACHE	(1<<4)
#define PTE_ACCESSED		(1<<5)
#define PTE_DIRTY			(1<<6)		// only PTE
#define PTE_SIZE_4M			(1<<7)		// only PDE
#define PTE_GLOBAL			(1<<8)		// only PTE
#define PTE_FRAME_SHIFT		12

typedef struct page_table {
	uint32_t page[1024];
} pagetable_t;

struct page_directory {
	uint32_t phys_addr;		// physical address of page directory
	// to modify a page directory, we first map it
	// then we can use mirroring to edit it
	// (the last 4M of the address space are mapped to the PD itself)

	mutex_t mutex;
};


// access kernel page directory page defined in loader.s
// (this is a correct higher-half address)
extern pagetable_t kernel_pd;

// pre-allocate a page table so that we can map the first 4M of kernel memory
static pagetable_t __attribute__((aligned(PAGE_SIZE))) kernel_pt0;

extern char kernel_stack_protector;

static pagedir_t kernel_pd_d;

#define current_pt ((pagetable_t*)PD_MIRROR_ADDR)
#define current_pd ((pagetable_t*)(PD_MIRROR_ADDR + (N_PAGES_IN_PT-1)*PAGE_SIZE))

void page_fault_handler(registers_t *regs) {
	void* vaddr;
	asm volatile("movl %%cr2, %0":"=r"(vaddr));

	if ((size_t)vaddr >= K_HIGHHALF_ADDR) {
		uint32_t pt = PT_OF_ADDR(vaddr);

		if (current_pd != &kernel_pd && current_pd->page[pt] != kernel_pd.page[pt]) {
			current_pd->page[pt] = kernel_pd.page[pt];
			invlpg(&current_pt[pt]);
			return;
		}
		if (regs->eflags & EFLAGS_IF) asm volatile("sti");	// from now on we are preemptible

		if (vaddr >= (void*)&kernel_stack_protector && vaddr < (void*)&kernel_stack_protector + PAGE_SIZE) {
			dbg_printf("Kernel stack overflow at 0x%p\n", vaddr);
			PANIC("Kernel stack overflow.");
		}

		if ((size_t)vaddr >= PD_MIRROR_ADDR) {
			dbg_printf("Fault on access to mirrorred PD at 0x%p\n", vaddr);
			dbg_print_region_stats();
			PANIC("Unhandled kernel space page fault");
		}

		region_info_t *i = find_region(vaddr);
		if (i == 0) {
			dbg_printf("Kernel pagefault in non-existing region at 0x%p\n", vaddr);
			dbg_dump_registers(regs);
			PANIC("Unhandled kernel space page fault");
		}
		if (i->pf == 0) {
			dbg_printf("Kernel pagefault in region with no handler at 0x%p\n", vaddr);
			dbg_dump_registers(regs);
			dbg_print_region_stats();
			PANIC("Unhandled kernel space page fault");
		}
		i->pf(get_current_pagedir(), i, vaddr);
	} else {
		if (regs->eflags & EFLAGS_IF) asm volatile("sti");	// userspace PF handlers should always be preemptible

		dbg_printf("Userspace page fault at 0x%p\n", vaddr);
		PANIC("Unhandled userspace page fault");
		// not handled yet
		// TODO
	}
}

void paging_setup(void* kernel_data_end) {
	size_t n_kernel_pages =
		PAGE_ALIGN_UP((size_t)kernel_data_end - K_HIGHHALF_ADDR)/PAGE_SIZE;

	ASSERT(n_kernel_pages <= 1024);	// we use less than 4M for kernel

	// setup kernel_pd_d structure
	kernel_pd_d.phys_addr = (size_t)&kernel_pd - K_HIGHHALF_ADDR;
	kernel_pd_d.mutex = MUTEX_UNLOCKED;

	// setup kernel_pt0
	ASSERT(PAGE_OF_ADDR(K_HIGHHALF_ADDR) == 0);	// kernel is 4M-aligned
	ASSERT(FIRST_KERNEL_PT == 768);
	for (size_t i = 0; i < n_kernel_pages; i++) {
		if ((i * PAGE_SIZE) + K_HIGHHALF_ADDR == (size_t)&kernel_stack_protector) {
			kernel_pt0.page[i] = 0;	// don't map kernel stack protector page
			frame_free(i, 1);
		} else {
			kernel_pt0.page[i] = (i << PTE_FRAME_SHIFT) | PTE_PRESENT | PTE_RW | PTE_GLOBAL;
		}
	}
	for (size_t i = n_kernel_pages; i < 1024; i++){
		kernel_pt0.page[i] = 0;
	}

	// replace 4M mapping by kernel_pt0
	kernel_pd.page[FIRST_KERNEL_PT] =
		(((size_t)&kernel_pt0 - K_HIGHHALF_ADDR) & PAGE_MASK) | PTE_PRESENT | PTE_RW;
	// set up mirroring
	kernel_pd.page[N_PAGES_IN_PT-1] =
		(((size_t)&kernel_pd - K_HIGHHALF_ADDR) & PAGE_MASK) | PTE_PRESENT | PTE_RW;

	invlpg((void*)K_HIGHHALF_ADDR);

	// paging already enabled in loader, nothing to do.

	// disable 4M pages (remove PSE bit in CR4)
	uint32_t cr4;
	asm volatile("movl %%cr4, %0": "=r"(cr4));
	cr4 &= ~0x00000010;
	asm volatile("movl %0, %%cr4":: "r"(cr4));

	idt_set_ex_handler(EX_PAGE_FAULT, page_fault_handler);
}

pagedir_t *get_current_pagedir() {
	if (current_task == 0) return &kernel_pd_d;
	return current_task->current_pd_d;
}

pagedir_t *get_kernel_pagedir() {
	return &kernel_pd_d;
}

void switch_pagedir(pagedir_t *pd) {
	asm volatile("movl %0, %%cr3":: "r"(pd->phys_addr));
	if (current_task != 0) current_task->current_pd_d = pd;
}

// ============================== //
// Mapping and unmapping of pages //
// ============================== //

uint32_t pd_get_frame(void* vaddr) {
	uint32_t pt = PT_OF_ADDR(vaddr);
	uint32_t page = PAGE_OF_ADDR(vaddr);

	pagetable_t *pd = ((size_t)vaddr >= K_HIGHHALF_ADDR ? &kernel_pd : current_pd);

	if (!pd->page[pt] & PTE_PRESENT) return 0;
	if (!current_pt[pt].page[page] & PTE_PRESENT) return 0;
	return current_pt[pt].page[page] >> PTE_FRAME_SHIFT;
}

int pd_map_page(void* vaddr, uint32_t frame_id, bool rw) {
	uint32_t pt = PT_OF_ADDR(vaddr);
	uint32_t page = PAGE_OF_ADDR(vaddr);

	ASSERT((size_t)vaddr < PD_MIRROR_ADDR);
	
	pagedir_t *pdd = ((size_t)vaddr >= K_HIGHHALF_ADDR || current_task == 0
							? &kernel_pd_d : current_task->current_pd_d);
	pagetable_t *pd = ((size_t)vaddr >= K_HIGHHALF_ADDR ? &kernel_pd : current_pd);
	mutex_lock(&pdd->mutex);

	if (!pd->page[pt] & PTE_PRESENT) {
		uint32_t new_pt_frame = frame_alloc(1);
		if (new_pt_frame == 0) {
			mutex_unlock(&pdd->mutex);
			return 1;	// OOM
		}

		current_pd->page[pt] = pd->page[pt] =
			(new_pt_frame << PTE_FRAME_SHIFT) | PTE_PRESENT | PTE_RW;
		invlpg(&current_pt[pt]);
	}
	current_pt[pt].page[page] =
		(frame_id << PTE_FRAME_SHIFT)
			| PTE_PRESENT
			| ((size_t)vaddr < K_HIGHHALF_ADDR ? PTE_USER : PTE_GLOBAL)
			| (rw ? PTE_RW : 0);
	invlpg(vaddr);

	mutex_unlock(&pdd->mutex);
	return 0;
} 

void pd_unmap_page(void* vaddr) {
	uint32_t pt = PT_OF_ADDR(vaddr);
	uint32_t page = PAGE_OF_ADDR(vaddr);

	pagetable_t *pd = ((size_t)vaddr >= K_HIGHHALF_ADDR ? &kernel_pd : current_pd);
	// no need to lock the PD's mutex

	if (!pd->page[pt] & PTE_PRESENT) return;
	if (!current_pt[pt].page[page] & PTE_PRESENT) return;

	current_pt[pt].page[page] = 0;
	invlpg(vaddr);

	// If the page table is completely empty we might want to free
	// it, but we would actually lose a lot of time checking if
	// the PT is really empty (since we don't store the
	// number of used pages in each PT), so it's probably not worth it
}

// Creation and deletion of page directories

pagedir_t *create_pagedir() {
	return 0;	// TODO
}
void delete_pagedir(pagedir_t *pd) {
	return;		// TODO
}

/* vim: set ts=4 sw=4 tw=0 noet :*/