#include <thread.h>
#include <malloc.h>
#include <dbglog.h>
#include <idt.h>
#include <gdt.h>
#include <hashtbl.h>
#include <frame.h>
#include <paging.h>
#include <worker.h>
#include <process.h>
#include <freemem.h>
#include <prng.h>
void save_context_and_enter_scheduler(saved_context_t *ctx);
void resume_context(saved_context_t *ctx);
thread_t *current_thread = 0;
static hashtbl_t *waiters = 0; // threads waiting on a ressource
STATIC_MUTEX(waiters_mutex);
// ====================== //
// THE PROGRAMMABLE TIMER //
// ====================== //
void set_pit_frequency(uint32_t freq) {
uint32_t divisor = 1193180 / freq;
ASSERT(divisor < 65536); // must fit on 16 bits
uint8_t l = (divisor & 0xFF);
uint8_t h = ((divisor >> 8) & 0xFF);
outb(0x43, 0x36);
outb(0x40, l);
outb(0x40, h);
}
// =========================== //
// CRITICAL SECTION MANAGEMENT //
// =========================== //
int enter_critical(int level) {
asm volatile("cli");
if (current_thread == 0) return CL_EXCL;
int prev_level = current_thread->critical_level;
if (level > prev_level) current_thread->critical_level = level;
if (current_thread->critical_level < CL_NOINT) asm volatile("sti");
return prev_level;
}
void exit_critical(int prev_level) {
asm volatile("cli");
if (current_thread == 0) return;
if (prev_level < current_thread->critical_level) current_thread->critical_level = prev_level;
if (current_thread->critical_level < CL_NOINT) asm volatile("sti");
}
// ================== //
// THE TASK SCHEDULER //
// ================== //
static thread_t *queue_first_thread = 0, *queue_last_thread = 0;
void enqueue_thread(thread_t *t, bool just_ran) {
ASSERT(t->state == T_STATE_RUNNING);
if (queue_first_thread == 0) {
queue_first_thread = queue_last_thread = t;
t->next_in_queue = 0;
} else if (just_ran) {
t->next_in_queue = 0;
queue_last_thread->next_in_queue = t;
queue_last_thread = t;
} else {
t->next_in_queue = queue_first_thread;
queue_first_thread = t;
}
}
thread_t* dequeue_thread() {
thread_t *t = queue_first_thread;
if (t == 0) return 0;
queue_first_thread = t->next_in_queue;
if (queue_first_thread == 0) queue_last_thread = 0;
return t;
}
void remove_thread_from_queue(thread_t *t) {
if (queue_first_thread == t) {
queue_first_thread = t->next_in_queue;
if (queue_first_thread == 0) queue_last_thread = 0;
} else {
for (thread_t *it = queue_first_thread; it != 0; it = it->next_in_queue) {
if (it->next_in_queue == t) {
it->next_in_queue = t->next_in_queue;
if (it->next_in_queue == 0) queue_last_thread = t;
break;
}
}
}
}
// ================ //
// THE TASKING CODE //
// ================ //
void run_scheduler() {
// At this point, interrupts are disabled
// This function is expected NEVER TO RETURN
if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) {
current_thread->last_ran = get_kernel_time();
if (current_thread->proc) current_thread->proc->last_ran = current_thread->last_ran;
enqueue_thread(current_thread, true);
}
current_thread = dequeue_thread();
if (current_thread != 0) {
thread_t *ptr = current_thread;
prng_add_entropy((uint8_t*)&ptr, sizeof(ptr));
set_kernel_stack(current_thread->stack_region->addr + current_thread->stack_region->size);
resume_context(¤t_thread->ctx);
} else {
// Wait for an IRQ
asm volatile("sti; hlt");
// At this point an IRQ has happenned
// and has been processed. Loop around.
run_scheduler();
}
}
static void run_thread(void (*entry)(void*), void* data) {
ASSERT(current_thread->state == T_STATE_RUNNING);
dbg_printf("Begin thread 0x%p (in process %d)\n",
current_thread, (current_thread->proc ? current_thread->proc->pid : 0));
switch_pagedir(get_kernel_pagedir());
exit_critical(CL_USER);
entry(data);
exit();
}
thread_t *new_thread(entry_t entry, void* data) {
thread_t *t = (thread_t*)malloc(sizeof(thread_t));
if (t == 0) return 0;
void* stack = region_alloc(KPROC_STACK_SIZE + PAGE_SIZE, "Stack");
if (stack == 0) {
free(t);
return 0;
}
void* stack_low = stack + PAGE_SIZE;
void* stack_high = stack_low + KPROC_STACK_SIZE;
for (void* i = stack_low; i < stack_high; i += PAGE_SIZE) {
uint32_t f;
int tries = 0;
while ((f = frame_alloc(1)) == 0 && (tries++) < 3) {
free_some_memory();
}
if (f == 0) {
PANIC("TODO (OOM could not create kernel stack for new thread)");
}
bool map_ok = pd_map_page(i, f, true);
if (!map_ok) {
PANIC("TODO (OOM(2) could not create kernel stack for new thread)");
}
}
t->stack_region = find_region(stack);
ASSERT(stack_high == t->stack_region->addr + t->stack_region->size);
t->ctx.esp = (uint32_t*)stack_high;
*(--t->ctx.esp) = (uint32_t)data; // push second argument : data
*(--t->ctx.esp) = (uint32_t)entry; // push first argument : entry point
*(--t->ctx.esp) = 0; // push invalid return address (the run_thread function never returns)
t->ctx.eip = (void(*)())run_thread;
t->state = T_STATE_LOADING;
t->last_ran = 0;
t->must_exit = false;
t->current_pd_d = get_kernel_pagedir();
t->critical_level = CL_EXCL;
// used by user processes
t->proc = 0;
t->next_in_proc = 0;
t->user_ex_handler = 0;
return t;
}
static void delete_thread(thread_t *t) {
dbg_printf("Deleting thread 0x%p\n", t);
if (t->proc != 0)
process_thread_deleted(t);
region_free_unmap_free(t->stack_region->addr);
free(t);
}
// ========== //
// SETUP CODE //
// ========== //
void irq0_handler(registers_t *regs, int crit_level) {
notify_time_pass(1000000 / TASK_SWITCH_FREQUENCY);
exit_critical(crit_level);
if (current_thread != 0 && current_thread->critical_level == CL_USER) {
save_context_and_enter_scheduler(¤t_thread->ctx);
}
}
void threading_setup(entry_t cont, void* arg) {
waiters = create_hashtbl(id_key_eq_fun, id_hash_fun, 0);
ASSERT(waiters != 0);
set_pit_frequency(TASK_SWITCH_FREQUENCY);
// no need to set irq0 handler
thread_t *t = new_thread(cont, arg);
ASSERT(t != 0);
start_thread(t);
exit_critical(CL_USER);
run_scheduler(); // never returns
ASSERT(false);
}
// ======================= //
// TASK STATE MANIPULATION //
// ======================= //
void start_thread(thread_t *t) {
ASSERT(t->state == T_STATE_LOADING);
t->state = T_STATE_RUNNING;
{ int st = enter_critical(CL_NOINT);
enqueue_thread(t, false);
exit_critical(st); }
}
void yield() {
ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);
save_context_and_enter_scheduler(¤t_thread->ctx);
}
bool wait_on(void* x) {
return wait_on_many(&x, 1);
}
bool wait_on_many(void** x, size_t n) {
ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL);
ASSERT(n > 0);
mutex_lock(&waiters_mutex);
// ---- Check we can wait on all the requested objects
bool ok = true;
for (size_t i = 0; ok && i < n; i++) {
void* prev_th = hashtbl_find(waiters, x[i]);
if (prev_th == 0) {
bool add_ok = hashtbl_add(waiters, x[i], (void*)1);
if (!add_ok) {
ok = false;
}
} else if (prev_th != (void*)1) {
ok = false;
}
}
if (!ok) {
mutex_unlock(&waiters_mutex);
return false;
}
// ---- Set ourselves as the waiting thread for all the requested objets
int st = enter_critical(CL_NOSWITCH);
for (size_t i = 0; i < n; i++) {
ASSERT(hashtbl_change(waiters, x[i], current_thread));
}
// ---- Go to sleep
mutex_unlock(&waiters_mutex);
current_thread->state = T_STATE_PAUSED;
save_context_and_enter_scheduler(¤t_thread->ctx);
// ---- Remove ourselves from the list
mutex_lock(&waiters_mutex);
for (size_t i = 0; i < n; i++) {
ASSERT(hashtbl_change(waiters, x[i], (void*)1));
}
mutex_unlock(&waiters_mutex);
exit_critical(st);
// ---- Check that we weren't waked up because of a kill request
if (current_thread->must_exit) return false;
return true;
}
void usleep(int usecs) {
if (current_thread == 0) return;
void resume_on_v(void* x) {
resume_on(x);
}
bool ok = worker_push_in(usecs, resume_on_v, current_thread);
if (ok) wait_on(current_thread);
}
void exit() {
void delete_thread_v(void* v) {
delete_thread((thread_t*)v);
}
int st = enter_critical(CL_NOSWITCH);
// the critical section here does not guarantee that worker_push will return immediately
// (it may switch before adding the delete_thread task), but once the task is added
// no other switch may happen, therefore this thread will not get re-enqueued
dbg_printf("Thread 0x%p exiting.\n", current_thread);
worker_push(delete_thread_v, current_thread);
current_thread->state = T_STATE_FINISHED;
exit_critical(st);
yield(); // expected never to return!
ASSERT(false);
}
bool resume_on(void* x) {
thread_t *thread;
bool ret = false;
mutex_lock(&waiters_mutex);
int st = enter_critical(CL_NOINT);
thread = hashtbl_find(waiters, x);
if (thread != 0 && thread != (void*)1) {
if (thread->state == T_STATE_PAUSED) {
thread->state = T_STATE_RUNNING;
enqueue_thread(thread, false);
ret = true;
}
}
mutex_unlock(&waiters_mutex);
exit_critical(st);
return ret;
}
void kill_thread(thread_t *thread) {
ASSERT(thread != current_thread);
int st = enter_critical(CL_NOSWITCH);
thread->must_exit = true;
int i = 0;
while (thread->state != T_STATE_FINISHED) {
if (thread->state == T_STATE_PAUSED) {
thread->state = T_STATE_RUNNING;
enqueue_thread(thread, false);
}
yield();
if (i++ > 100) dbg_printf("Thread 0x%p must be killed but will not exit.\n", thread);
}
exit_critical(st);
}
/* vim: set ts=4 sw=4 tw=0 noet :*/