summaryrefslogtreecommitdiff
path: root/src/stem/mem/paging.c
blob: 27ce0437a0b5071386cf624817631b08d3f169ef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "paging.h"
#include <bitset.h>
#include <stdlib.h>
#include <core/monitor.h>
#include "mem.h"
#include "seg.h"
#include <core/sys.h>
#include <task/task.h>

static struct bitset frames;

struct page_directory *kernel_pagedir, *current_pagedir;

/* ACCESSOR FUNCTIONS FOR STATIC BITSET */
uint32_t frame_alloc() {
	uint32_t free = bitset_firstFree(&frames);
	bitset_set(&frames, free);
	return free;
}

void frame_free(uint32_t id) {
	bitset_clear(&frames, id);
}


void paging_init(size_t totalRam) {
	uint32_t i;

	frames.size = totalRam / 0x1000;
	frames.bits = kmalloc(INDEX_FROM_BIT(frames.size));

	kernel_pagedir = kmalloc(sizeof(struct page_directory));
	kernel_pagedir->mappedSegs = 0;
	kernel_pagedir->tablesPhysical = kmalloc_page(&kernel_pagedir->physicalAddr);
	for (i = 0; i < 1024; i++) {
		kernel_pagedir->tables[i] = 0;
		kernel_pagedir->tablesPhysical[i] = 0;
	}

	for (i = 0xE0000000; i < mem_placementAddr; i += 0x1000) {
		page_map(pagedir_getPage(kernel_pagedir, i, 1), frame_alloc(), 0, 0);
	}
	for (i = 0; i < (mem_placementAddr - 0xE0000000) / 0x100000; i++) {
		kernel_pagedir->tablesPhysical[i] = kernel_pagedir->tablesPhysical[i + 896];
		kernel_pagedir->tables[i] = kernel_pagedir->tables[i + 896];
	}

	monitor_write("Page dir is at: ");
	monitor_writeHex(kernel_pagedir->physicalAddr);
	pagedir_switch(kernel_pagedir);
	monitor_write("\nPaging started\n");
}

void paging_cleanup() {
	uint32_t i;
	for (i = 0; i < (mem_placementAddr - 0xE0000000) / 0x100000; i++) {
		kernel_pagedir->tablesPhysical[i] = 0;
		kernel_pagedir->tables[i] = 0;
	}
	monitor_write("Pages cleaned up\n");
}

void pagedir_switch(struct page_directory *pd) {
	current_pagedir = pd;
	asm volatile("mov %0, %%cr3" : : "r"(pd->physicalAddr));
	uint32_t cr0;
	asm volatile("mov %%cr0, %0" : "=r"(cr0));
	cr0 |= 0x80000000;
	asm volatile("mov %0, %%cr0" : : "r"(cr0));
}

struct page_directory *pagedir_new() {
	uint32_t i;

	struct page_directory *pd = kmalloc(sizeof(struct page_directory));
	pd->tablesPhysical = kmalloc_page(&pd->physicalAddr);
	pd->mappedSegs = 0;

	for (i = 0; i < 1024; i++) {
		pd->tables[i] = 0; pd->tablesPhysical[i] = 0;
	}

	for (i = 896; i < 1024; i++) {
		pd->tables[i] = kernel_pagedir->tables[i];
		pd->tablesPhysical[i] = kernel_pagedir->tablesPhysical[i];
	}

	return pd;
}

void pagedir_delete(struct page_directory *pd) {
	uint32_t i;
	//Unmap segments
	while (pd->mappedSegs != 0) seg_unmap(pd->mappedSegs);
	//Cleanup page tables
	for (i = 0; i < 896; i++) {
		kfree_page(pd->tables[i]);
	}
	kfree_page(pd->tablesPhysical);
	kfree(pd);
}

uint32_t paging_fault(struct registers *regs) {
	size_t addr;
	struct segment_map *seg = 0;
	asm volatile("mov %%cr2, %0" : "=r"(addr));

	seg = current_pagedir->mappedSegs;
	while (seg) {
		if (seg->start <= addr && seg->start + seg->len > addr) break;
		seg = seg->next;
	}

	if (seg != 0) {
		if (seg->seg->handle_fault(seg, addr, (regs->err_code & 0x2) && (regs->eip < 0xE0000000)) != 0) seg = 0;
	}

	if (seg == 0) {
		monitor_write("(paging.c:119) Unhandled Page Fault ");
		if (regs->err_code & 0x1) monitor_write("present ");
		if (regs->err_code & 0x2) monitor_write("write ");
		if (regs->err_code & 0x4) monitor_write("user ");
		if (regs->err_code & 0x8) monitor_write("rsvd ");
		if (regs->err_code & 0x10) monitor_write("instructionfetch ");
		monitor_write("@"); monitor_writeHex(addr); monitor_write("\n");
		return 1;
	}
	return 0;
}

struct page *pagedir_getPage(struct page_directory *pd, uint32_t address, int make) {
	address /= 0x1000;
	uint32_t table_idx = address / 1024;

	if (pd->tables[table_idx]) {
		return &pd->tables[table_idx]->pages[address %  1024];
	} else if (make) {
		pd->tables[table_idx] = kmalloc_page(pd->tablesPhysical + table_idx);
		if (table_idx >= 896)
			tasking_updateKernelPagetable(table_idx, pd->tables[table_idx], pd->tablesPhysical[table_idx]);
		memset((uint8_t*)pd->tables[table_idx], 0, 0x1000);
		pd->tablesPhysical[table_idx] |= 0x07;
		return &pd->tables[table_idx]->pages[address %  1024];
	} else {
		return 0;
	}
}

void page_map(struct page *page, uint32_t frame, uint32_t user, uint32_t rw) {
	if (page != 0 && page->frame == 0 && page->present == 0) {
		page->present = 1;
		page->rw = (rw ? 1 : 0);
		page->user = (user ? 1 : 0);
		page->frame = frame;
	}
}

void page_unmap(struct page *page) {
	if (page != 0) {
		page->frame = 0;
		page->present = 0;
	}
}

void page_unmapFree(struct page *page) {
	if (page != 0) {
		if (page->frame != 0) frame_free(page->frame);
		page->frame = 0;
		page->present = 0;
	}
}