summaryrefslogtreecommitdiff
path: root/src/kernel/task/task.c
blob: 9d64b9ef552008fa1d2681d9de5f73cac81f8f85 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include "task.h"
#include "sched.h"
#include <core/sys.h>
#include <core/monitor.h>
#include <mem/mem.h>
#include <mem/seg.h>
#include <mem/gdt.h>
#include <ipc/object.h>
#include "timer.h"

#define KSTACKSIZE 0x8000

static struct object *manager_object = 0;

//Static routines for handling threads exiting and all cleanup
static void thread_exit_stackJmp(uint32_t reason);
static void thread_exit2(uint32_t reason);
static void thread_delete(struct thread *th);
static void process_delete(struct process *pr);

//From task_.asm
extern uint32_t read_eip();
extern void task_idle(void*);

static uint32_t nextpid = 1;
struct process *processes = 0, *kernel_process;
struct thread *current_thread = 0, *idle_thread;

uint32_t tasking_tmpStack[KSTACKSIZE];

/*	Sets up tasking. Called by kmain on startup.
	Creates a kernel process and an IDLE thread in it. */
void tasking_init() {
	cli();
	kernel_process = kmalloc(sizeof(struct process));	//This process must be hidden to users
	kernel_process->pid = kernel_process->uid = kernel_process->thread_count = 0;
	kernel_process->privilege = PL_KERNEL;
	kernel_process->parent = kernel_process;
	kernel_process->pagedir = kernel_pagedir;
	kernel_process->next = 0;
	current_thread = 0;
	idle_thread = thread_new(kernel_process, task_idle, 0);
	kernel_process->threads = idle_thread;
	sti();
	monitor_write("[Tasking] ");
}

/*	Called by the paging functions when a page table is allocated in the kernel space (>0xE0000000).
	Updates the page directories of all the processes. */
void tasking_updateKernelPagetable(uint32_t idx, struct page_table *table, uint32_t tablephysical) {
	if (idx < 896) return;
	struct process* it = processes;
	while (it != 0) {
		it->pagedir->tables[idx] = table;
		it->pagedir->tablesPhysical[idx] = tablephysical;
		it = it->next;
	}
}

/*	Called when a timer IRQ fires. Does a context switch. */
void tasking_switch() {
	if (processes == 0) PANIC("No processes are running !");
	asm volatile("cli");

	uint32_t esp, ebp, eip;

	asm volatile("mov %%esp, %0" : "=r"(esp));
	asm volatile("mov %%ebp, %0" : "=r"(ebp));
	eip = read_eip();

	if (eip == 0x12345) {
		return;
	}

	if (current_thread != 0) {
		current_thread->esp = esp;
		current_thread->ebp = ebp;
		current_thread->eip = eip;
		if (current_thread->state == TS_RUNNING && current_thread != idle_thread) sched_enqueue(current_thread);
	}

	current_thread = sched_dequeue();
	if (current_thread == 0) current_thread = idle_thread;

	pagedir_switch(current_thread->process->pagedir);

	gdt_setKernelStack(((uint32_t)current_thread->kernelStack_addr) + current_thread->kernelStack_size);

	asm volatile("			\
			mov %0, %%ebp;	\
			mov %1, %%esp;	\
			mov %2, %%ecx;	\
			mov $0x12345, %%eax;	\
			jmp *%%ecx;"
		: : "r"(current_thread->ebp), "r"(current_thread->esp), "r"(current_thread->eip));
}

/*	Called when an exception happens. Provides a stack trace if it was in kernel land.
	Ends the thread for most exceptions, ends the whole process for page faults. */
uint32_t tasking_handleException(struct registers *regs) {
	if (current_thread == 0) return 0;	//No tasking yet
	NL; WHERE; monitor_write("Unhandled exception : ");
	char *exception_messages[] = {"Division By Zero","Debug","Non Maskable Interrupt","Breakpoint",
    "Into Detected Overflow","Out of Bounds","Invalid Opcode","No Coprocessor", "Double Fault",
    "Coprocessor Segment Overrun","Bad TSS","Segment Not Present","Stack Fault","General Protection Fault",
    "Page Fault","Unknown Interrupt","Coprocessor Fault","Alignment Check","Machine Check"};
	monitor_write(exception_messages[regs->int_no]);
	monitor_write(" eip:"); monitor_writeHex(regs->eip);
	if (regs->eip >= 0xE0000000) {
		monitor_write("\n  Stack trace :");
		uint32_t *stack = (uint32_t*)regs->ebp, i;
		for (i = 0; i < 5 && stack > 0xE0000000 && stack < (regs->useresp + 0x8000); i++) {
			monitor_write("\nframe@"); monitor_writeHex(stack);
			monitor_write(" next:"); monitor_writeHex(stack[0]); monitor_write(" ret:"); monitor_writeHex(stack[1]);
			stack = (uint32_t*)stack[0];
		}
		PANIC("Kernel error'd.");
	}
	if (regs->int_no == 14) {
		monitor_write("\n>>> Process exiting.\n");
		thread_exit_stackJmp(EX_PR_EXCEPTION);
	} else {
		monitor_write("\n>>> Thread exiting.\n");
		thread_exit_stackJmp(EX_TH_EXCEPTION);
	}
	PANIC("This should never have happened. Please report this.");
	return 0;
}

/*	Puts the current thread in an inactive state. */
void thread_goInactive() {
	current_thread->state = TS_WAKEWAIT;
	tasking_switch();
}

/*	Wakes up the given thread. */
void thread_wakeUp(struct thread* t) {
	if (t->state == TS_WAKEWAIT) {
		t->state = TS_RUNNING;
		sched_enqueue(t);
	}
}

/*	Returns the privilege level of the current process. */
int proc_priv() {
	if (current_thread == 0 || current_thread->process == 0) return PL_UNKNOWN;
	return current_thread->process->privilege;
}

/*	For internal use only. Called by thread_exit_stackJmp on a stack that will not be deleted.
	Exits current thread or process, depending on the reason. */
void thread_exit2(uint32_t reason) {		//See EX_TH_* defines in task.h
	/*
	 * if reason == EX_TH_NORMAL, it is just one thread exiting because it has to
	 * if reason == EX_TH_EXCEPTION, it is just one thread exiting because of an exception
	 * if reason is none of the two cases above, it is the whole process exiting (with error code = reason)
	 */
	struct thread *th = current_thread;
	if (th == 0 || th->process == 0) goto retrn;
	struct process *pr = th->process;
	if ((reason == EX_TH_NORMAL || reason == EX_TH_EXCEPTION) && pr->thread_count > 1) {
		thread_delete(th);
	} else {
		process_delete(pr);
	}
	retrn:
	sti();
	tasking_switch();
}

/*	For internal use only. Called by thread_exit and process_exit.
	Switches to a stack that will not be deleted when current thread is deleted. */
void thread_exit_stackJmp(uint32_t reason) {
	cli();
	uint32_t *stack;
	stack = tasking_tmpStack + (KSTACKSIZE / 4);
	stack--; *stack = reason;
	stack--; *stack = 0;
	asm volatile("			\
			mov %0, %%esp;	\
			mov %1, %%ebp;	\
			mov %2, %%ecx;	\
			mov %3, %%cr3;	\
			jmp *%%ecx;" : :
			"r"(stack), "r"(stack), "r"(thread_exit2), "r"(kernel_pagedir->physicalAddr));
}

/*	System call. Exit the current thread. */
void thread_exit() {
	thread_exit_stackJmp(EX_TH_NORMAL);
}

/*	System call. Exit the current process. */
void process_exit(uint32_t retval) {
	if (retval == EX_TH_NORMAL || retval == EX_TH_EXCEPTION) retval = EX_PR_EXCEPTION;
	thread_exit_stackJmp(retval);
}

/*	For internal use only. This is called when a newly created thread first runs
	(its address is the value given for EIP).
	It switches to user mode if necessary and calls the entry point. */
static void thread_run(struct thread *thread, thread_entry entry_point, void *data) {
	pagedir_switch(thread->process->pagedir);
	if (thread->process->privilege >= PL_SERVICE) {	//User mode !
		uint32_t *stack = (uint32_t*)(thread->userStack_seg->start + thread->userStack_seg->len);

		stack--; *stack = (uint32_t)data;
		stack--; *stack = 0;
		size_t esp = (size_t)stack, eip = (size_t)entry_point;
		//Setup a false structure for returning from an interrupt :
		//value for esp is in ebx, for eip is in ecx
		//- update data segments to 0x23 = user data segment with RPL=3
		//- push value for ss : 0x23 (user data seg rpl3)
		//- push value for esp
		//- push flags
		//- update flags, set IF = 1 (interrupts flag)
		//- push value for cs : 0x1B = user code segment with RPL=3
		//- push eip
		//- return from fake interrupt
		asm volatile("				\
				mov $0x23, %%ax;	\
				mov %%ax, %%ds;		\
				mov %%ax, %%es;		\
				mov %%ax, %%fs;		\
				mov %%ax, %%gs;		\
									\
				pushl $0x23;		\
				pushl %%ebx;		\
				pushf;				\
				pop %%eax;			\
				or $0x200, %%eax;	\
				push %%eax;			\
				pushl $0x1B;		\
				push %%ecx;			\
				iret;				\
				" : : "b"(esp), "c"(eip));
	} else {
		asm volatile("sti");
		entry_point(data);
	}
	thread_exit(0);
}

/*	Creates a new thread for given process.
	Allocates a kernel stack and a user stack if necessary.
	Sets up the kernel stack for values to be passed to thread_run. */
struct thread *thread_new(struct process *proc, thread_entry entry_point, void *data) {
	struct thread *t = kmalloc(sizeof(struct thread));
	t->process = proc;
	t->next = 0;
	proc->thread_count++;

	if (proc->privilege >= PL_SERVICE) {	//We are running in user mode
		proc->stacksBottom -= USER_STACK_SIZE;
		t->userStack_seg = seg_map(simpleseg_make(proc->stacksBottom, USER_STACK_SIZE, 1), proc->pagedir, 0);
	}

	t->kernelStack_addr = kmalloc(KSTACKSIZE);
	t->kernelStack_size = KSTACKSIZE;

	uint32_t *stack = (uint32_t*)((size_t)t->kernelStack_addr + t->kernelStack_size);

	//Pass parameters
	stack--; *stack = (uint32_t)data;
	stack--; *stack = (uint32_t)entry_point;	
	stack--; *stack = (uint32_t)t;
	stack--; *stack = 0;
	t->esp = (uint32_t)stack;
	t->ebp = t->esp + 8;
	t->eip = (uint32_t)thread_run;

	t->state = TS_RUNNING;
	sched_enqueue(t);

	if (proc->threads == 0) {
		proc->threads = t;
	} else {
		struct thread *i = proc->threads;
		while (i->next != 0) i = i->next;
		i->next = t;
	}
	return t;
}

/*	Creates a new process. Creates a struct process and fills it up. */
struct process *process_new(struct process* parent, uint32_t uid, uint32_t privilege) {
	struct process* p = kmalloc(sizeof(struct process));
	p->pid = (nextpid++);
	p->uid = uid;
	p->thread_count = 0;
	p->privilege = privilege;
	p->parent = parent;
	p->pagedir = pagedir_new();
	p->next = processes;
	p->stacksBottom = 0xDF000000;
	p->heapseg = 0;

	p->next_objdesc = 0;
	p->objects = 0;
	struct object* o = obj_new(p);
	if (manager_object == 0) manager_object = o;
	objdesc_add(p, o);	//create process' root object and add descriptor 0 to it
	objdesc_add(p, manager_object);

	processes = p;
	return p;
}

/*	Deletes given thread, freeing the stack(s). */
static void thread_delete(struct thread *th) {
	if (th->process->threads == th) {
		th->process->threads = th->next;
	} else {
		struct thread *it = th->process->threads;
		while (it) {
			if (it->next == th) {
				it->next = th->next;
				break;
			}
			it = it->next;
		}
	}
	if (current_thread == th) current_thread = 0;
	th->process->thread_count--;
	kfree(th->kernelStack_addr);
	if (th->userStack_seg != 0) seg_unmap(th->userStack_seg);
	kfree(th);
}

/*	Deletes a process. First, deletes all its threads. Also deletes the corresponding page directory. */
static void process_delete(struct process *pr) {
	struct thread *it = pr->threads;
	while (it != 0) {
		thread_delete(it);
		it = it->next;
	}
	obj_closeall(pr);
	if (processes == pr) {
		processes = pr->next;
	} else {
		struct process *it = processes;
		while (it) {
			if (it->next == pr) {
				it->next = pr->next;
				break;
			}
			it = it->next;
		}
	}
	pagedir_delete(pr->pagedir);
	kfree(pr);
}

/*	System call. Called by the app to define the place for the heap. */
int process_setheapseg(size_t start, size_t end) {		//syscall
	struct process *p = current_thread->process;
	if (start >= 0xE0000000 || end >= 0xE0000000) return -1;
	if (p->heapseg == 0) {
		struct segment *s = simpleseg_make(start, end - start, 1);
		if (s == 0) return -5;
		p->heapseg = seg_map(s, p->pagedir, 0);
		if (p->heapseg == 0) return -1;
		return 0;
	} else if (p->heapseg->start != start) {
		seg_unmap(p->heapseg);
		struct segment *s = simpleseg_make(start, end - start, 1);
		if (s == 0) return -5;
		p->heapseg = seg_map(s, p->pagedir, 0);
		if (p->heapseg == 0) return -1;
		return 0;
	} else {
		return simpleseg_resize(p->heapseg, end - start);
	}
}