diff options
author | Alex AUVOLAT <alexis211@gmail.com> | 2012-05-01 14:55:18 +0200 |
---|---|---|
committer | Alex AUVOLAT <alexis211@gmail.com> | 2012-05-01 14:55:18 +0200 |
commit | e8cf65c07d78e3cfbac953b1b97c51998a5900df (patch) | |
tree | 7b75741a1d38b5da1ee79e877709b6b4723c4713 | |
parent | 5cac9acd3aedc8043d4272d93c56805c46ff6214 (diff) | |
download | TCE-e8cf65c07d78e3cfbac953b1b97c51998a5900df.tar.gz TCE-e8cf65c07d78e3cfbac953b1b97c51998a5900df.zip |
Now using Doug Lea's malloc in kernel land. Next: same in userland.
-rw-r--r-- | doc/syscalls.txt | 7 | ||||
-rw-r--r-- | src/common/include/errno.h | 42 | ||||
-rw-r--r-- | src/kernel/Makefile | 4 | ||||
-rw-r--r-- | src/kernel/core/kmain.c | 14 | ||||
-rw-r--r-- | src/kernel/core/sys.c | 6 | ||||
-rw-r--r-- | src/kernel/lib/std.c | 11 | ||||
-rw-r--r-- | src/kernel/lib/std.h | 14 | ||||
-rw-r--r-- | src/kernel/mem/_dlmalloc.c | 5357 | ||||
-rw-r--r-- | src/kernel/mem/_dlmalloc.h | 864 | ||||
-rw-r--r-- | src/kernel/mem/heap.basic.c | 136 | ||||
-rw-r--r-- | src/kernel/mem/heap.basic.h | 30 | ||||
-rw-r--r-- | src/kernel/mem/heap.c | 12 | ||||
-rw-r--r-- | src/kernel/mem/heap.std.c | 243 | ||||
-rw-r--r-- | src/kernel/mem/heap.std.h | 32 | ||||
-rw-r--r-- | src/kernel/mem/mem.c | 93 | ||||
-rw-r--r-- | src/kernel/mem/mem.h | 10 | ||||
-rw-r--r-- | src/kernel/mem/paging.c | 18 | ||||
-rw-r--r-- | src/kernel/mem/paging.h | 3 | ||||
-rw-r--r-- | src/kernel/task/idt.c | 1 | ||||
-rw-r--r-- | src/kernel/task/task.c | 2 | ||||
-rw-r--r-- | src/kernel/task/timer.c | 1 | ||||
-rw-r--r-- | src/user/test/main.c | 14 |
22 files changed, 6404 insertions, 510 deletions
diff --git a/doc/syscalls.txt b/doc/syscalls.txt index 89a1003..c94db19 100644 --- a/doc/syscalls.txt +++ b/doc/syscalls.txt @@ -14,7 +14,12 @@ id=eax Name Parameters Description edx: stack pointer 6 irq_wait ebx: irq number Waits for an IRQ (requires privilege PL_DRIVER) 7 proc_priv none Returns current process privilege level - 8 proc_setheap + + 8 sbrk ebx: size Allocates some memory + 9 brk ebx: new_end Allocates/frees some memory + + 10 mmap (see linux specs) + 11 munmap (see linux specs) If a processes wishes to exit with an error code, it HAS to use process_exit. thread_exit will do nothing. diff --git a/src/common/include/errno.h b/src/common/include/errno.h new file mode 100644 index 0000000..fe60d81 --- /dev/null +++ b/src/common/include/errno.h @@ -0,0 +1,42 @@ +#ifndef _DEF_ERRNO_H +#define _DEF_ERRNO_H + +// Copied from /usr/include/asm-generic/errno-base.h on a standard Linux system +// Most of these will NOT be used here. + +#define EPERM 1 /* Operation not permitted */ +#define ENOENT 2 /* No such file or directory */ +#define ESRCH 3 /* No such process */ +#define EINTR 4 /* Interrupted system call */ +#define EIO 5 /* I/O error */ +#define ENXIO 6 /* No such device or address */ +#define E2BIG 7 /* Argument list too long */ +#define ENOEXEC 8 /* Exec format error */ +#define EBADF 9 /* Bad file number */ +#define ECHILD 10 /* No child processes */ +#define EAGAIN 11 /* Try again */ +#define ENOMEM 12 /* Out of memory */ +#define EACCES 13 /* Permission denied */ +#define EFAULT 14 /* Bad address */ +#define ENOTBLK 15 /* Block device required */ +#define EBUSY 16 /* Device or resource busy */ +#define EEXIST 17 /* File exists */ +#define EXDEV 18 /* Cross-device link */ +#define ENODEV 19 /* No such device */ +#define ENOTDIR 20 /* Not a directory */ +#define EISDIR 21 /* Is a directory */ +#define EINVAL 22 /* Invalid argument */ +#define ENFILE 23 /* File table overflow */ +#define EMFILE 24 /* Too many open files */ +#define ENOTTY 25 /* Not a typewriter */ +#define ETXTBSY 26 /* Text file busy */ +#define EFBIG 27 /* File too large */ +#define ENOSPC 28 /* No space left on device */ +#define ESPIPE 29 /* Illegal seek */ +#define EROFS 30 /* Read-only file system */ +#define EMLINK 31 /* Too many links */ +#define EPIPE 32 /* Broken pipe */ +#define EDOM 33 /* Math argument out of domain of func */ +#define ERANGE 34 /* Math result not representable */ + +#endif diff --git a/src/kernel/Makefile b/src/kernel/Makefile index 53cfc31..0950ba7 100644 --- a/src/kernel/Makefile +++ b/src/kernel/Makefile @@ -2,8 +2,8 @@ Out = kernel.elf Obj = core/loader_.o core/kmain.o core/sys.o core/test.o \ core/monitor.o task/timer.o \ task/idt.o task/idt_.o task/task.o task/task_.o task/syscall.o task/sched.o \ - lib/bitset.o lib/mutex.o \ - mem/mem.o mem/paging.o mem/gdt.o mem/heap.o mem/seg.o \ + lib/bitset.o lib/mutex.o lib/std.o \ + mem/mem.o mem/paging.o mem/gdt.o mem/_dlmalloc.o mem/seg.o \ linker/elf.o ExtObj = $(SrcPath)/common/_common.o diff --git a/src/kernel/core/kmain.c b/src/kernel/core/kmain.c index 86db4ff..17c9425 100644 --- a/src/kernel/core/kmain.c +++ b/src/kernel/core/kmain.c @@ -19,8 +19,6 @@ This function never returns : once multitasking is started for good, the execution flow of this function is never returned to. */ void kmain(struct multiboot_info_t* mbd, int32_t magic) { - monitor_clear(); - ASSERT(magic == MULTIBOOT_BOOTLOADER_MAGIC); size_t totalRam = 0; @@ -37,6 +35,8 @@ void kmain(struct multiboot_info_t* mbd, int32_t magic) { mem_placementAddr = (mods[i].mod_end & 0xFFFFF000) + 0x1000; } + monitor_clear(); + monitor_write(K_OS_NAME); monitor_write(" version "); monitor_write(K_OS_VER); @@ -44,20 +44,22 @@ void kmain(struct multiboot_info_t* mbd, int32_t magic) { monitor_write(K_OS_CODENAME); monitor_write("' starting up :\n"); + idt_init(); totalRam = ((mbd->mem_upper + mbd->mem_lower) * 1024); paging_init(totalRam); + _no_more_ksbrk = 1; gdt_init(); paging_cleanup(); - kheap_init(); + //kheap_init(); timer_init(30); tasking_init(); - test_run(); + //test_run(); - monitor_write("\nLoading modules :\n"); + monitor_write("\n\nLoading modules :\n"); for (i = 0; i < mbd->mods_count; i++) { monitor_write(" * "); monitor_write((char*)mods[i].string); @@ -73,7 +75,7 @@ void kmain(struct multiboot_info_t* mbd, int32_t magic) { } } - monitor_write("Modules now RULE THE WORLD !\n"); + monitor_write("Modules now RULE THE WORLD !\n\n"); sti(); tasking_switch(); PANIC("Should never happen. Something probably went wrong with multitasking."); diff --git a/src/kernel/core/sys.c b/src/kernel/core/sys.c index 4c53d58..4a88838 100644 --- a/src/kernel/core/sys.c +++ b/src/kernel/core/sys.c @@ -42,18 +42,18 @@ static void panic_do(char* file, int line) { monitor_write("\n File:\t\t"); monitor_write(file); monitor_put(':'); monitor_writeDec(line); monitor_write("\nTrace:\n"); size_t bp; asm volatile("mov %%ebp,%0" : "=r"(bp)); stack_trace(bp); - monitor_write("\n\t\tSystem halted -_-'\n"); + monitor_write("\n\t\tSystem halted -_-'"); asm volatile("cli; hlt"); } /* These functions stop the system, reporting an error message, because something bad happenned. */ void panic(char* message, char* file, int line) { - monitor_write("\n\nPANIC:\t\t"); monitor_write(message); + monitor_write("\nPANIC:\t\t"); monitor_write(message); panic_do(file, line); } void panic_assert(char* assertion, char* file, int line) { - monitor_write("\n\nASSERT FAILED:\t"); monitor_write(assertion); + monitor_write("\nASSERT FAILED:\t"); monitor_write(assertion); panic_do(file, line); } diff --git a/src/kernel/lib/std.c b/src/kernel/lib/std.c new file mode 100644 index 0000000..316dfa3 --- /dev/null +++ b/src/kernel/lib/std.c @@ -0,0 +1,11 @@ +#include "std.h" +#include "core/sys.h" + +int errno = 0; + +void abort() { + monitor_write("\n\n ABORT - errno: "); + monitor_writeDec(errno); + monitor_write("\n"); + PANIC("abort() called, probably a memory manager failure."); +} diff --git a/src/kernel/lib/std.h b/src/kernel/lib/std.h new file mode 100644 index 0000000..51e0435 --- /dev/null +++ b/src/kernel/lib/std.h @@ -0,0 +1,14 @@ +#ifndef DEF_LIB_STD_H +#define DEF_LIB_STD_H + +// Functions enabling the use of dlmalloc code + +#include <types.h> /* For size_t */ + +void abort(); +#define sbrk ksbrk +#define brk kbrk + +extern int errno; + +#endif diff --git a/src/kernel/mem/_dlmalloc.c b/src/kernel/mem/_dlmalloc.c new file mode 100644 index 0000000..18dabab --- /dev/null +++ b/src/kernel/mem/_dlmalloc.c @@ -0,0 +1,5357 @@ +/* + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/publicdomain/zero/1.0/ Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version 2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) + + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.5.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +* Vital statistics: + + Supported pointer/size_t representation: 4 or 8 bytes + size_t MUST be an unsigned type of the same width as + pointers. (If you are using an ancient system that declares + size_t as a signed type, or need it to be a different width + than pointers, you can use a previous release of this malloc + (e.g. 2.7.2) supporting these.) + + Alignment: 8 bytes (default) + This suffices for nearly all current machines and C compilers. + However, you can define MALLOC_ALIGNMENT to be wider than this + if necessary (up to 128bytes), at the expense of using more space. + + Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) + 8 or 16 bytes (if 8byte sizes) + Each malloced chunk has a hidden word of overhead holding size + and status information, and additional cross-check word + if FOOTERS is defined. + + Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) + 8-byte ptrs: 32 bytes (including overhead) + + Even a request for zero bytes (i.e., malloc(0)) returns a + pointer to something of the minimum allocatable size. + The maximum overhead wastage (i.e., number of extra bytes + allocated than were requested in malloc) is less than or equal + to the minimum size, except for requests >= mmap_threshold that + are serviced via mmap(), where the worst case wastage is about + 32 bytes plus the remainder from a system page (the minimal + mmap unit); typically 4096 or 8192 bytes. + + Security: static-safe; optionally more or less + The "security" of malloc refers to the ability of malicious + code to accentuate the effects of errors (for example, freeing + space that is not currently malloc'ed or overwriting past the + ends of chunks) in code that calls malloc. This malloc + guarantees not to modify any memory locations below the base of + heap, i.e., static variables, even in the presence of usage + errors. The routines additionally detect most improper frees + and reallocs. All this holds as long as the static bookkeeping + for malloc itself is not corrupted by some other means. This + is only one aspect of security -- these checks do not, and + cannot, detect all possible programming errors. + + If FOOTERS is defined nonzero, then each allocated chunk + carries an additional check word to verify that it was malloced + from its space. These check words are the same within each + execution of a program using malloc, but differ across + executions, so externally crafted fake chunks cannot be + freed. This improves security by rejecting frees/reallocs that + could corrupt heap memory, in addition to the checks preventing + writes to statics that are always on. This may further improve + security at the expense of time and space overhead. (Note that + FOOTERS may also be worth using with MSPACES.) + + By default detected errors cause the program to abort (calling + "abort()"). You can override this to instead proceed past + errors by defining PROCEED_ON_ERROR. In this case, a bad free + has no effect, and a malloc that encounters a bad address + caused by user overwrites will ignore the bad address by + dropping pointers and indices to all known memory. This may + be appropriate for programs that should continue if at all + possible in the face of programming errors, although they may + run out of memory because dropped memory is never reclaimed. + + If you don't like either of these options, you can define + CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything + else. And if if you are sure that your program using malloc has + no errors or vulnerabilities, you can define INSECURE to 1, + which might (or might not) provide a small performance improvement. + + It is also possible to limit the maximum total allocatable + space, using malloc_set_footprint_limit. This is not + designed as a security feature in itself (calls to set limits + are not screened or privileged), but may be useful as one + aspect of a secure implementation. + + Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero + When USE_LOCKS is defined, each public call to malloc, free, + etc is surrounded with a lock. By default, this uses a plain + pthread mutex, win32 critical section, or a spin-lock if if + available for the platform and not disabled by setting + USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined, + recursive versions are used instead (which are not required for + base functionality but may be needed in layered extensions). + Using a global lock is not especially fast, and can be a major + bottleneck. It is designed only to provide minimal protection + in concurrent environments, and to provide a basis for + extensions. If you are using malloc in a concurrent program, + consider instead using nedmalloc + (http://www.nedprod.com/programs/portable/nedmalloc/) or + ptmalloc (See http://www.malloc.de), which are derived from + versions of this malloc. + + System requirements: Any combination of MORECORE and/or MMAP/MUNMAP + This malloc can use unix sbrk or any emulation (invoked using + the CALL_MORECORE macro) and/or mmap/munmap or any emulation + (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system + memory. On most unix systems, it tends to work best if both + MORECORE and MMAP are enabled. On Win32, it uses emulations + based on VirtualAlloc. It also uses common C library functions + like memset. + + Compliance: I believe it is compliant with the Single Unix Specification + (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably + others as well. + +* Overview of algorithms + + This is not the fastest, most space-conserving, most portable, or + most tunable malloc ever written. However it is among the fastest + while also being among the most space-conserving, portable and + tunable. Consistent balance across these factors results in a good + general-purpose allocator for malloc-intensive programs. + + In most ways, this malloc is a best-fit allocator. Generally, it + chooses the best-fitting existing chunk for a request, with ties + broken in approximately least-recently-used order. (This strategy + normally maintains low fragmentation.) However, for requests less + than 256bytes, it deviates from best-fit when there is not an + exactly fitting available chunk by preferring to use space adjacent + to that used for the previous small request, as well as by breaking + ties in approximately most-recently-used order. (These enhance + locality of series of small allocations.) And for very large requests + (>= 256Kb by default), it relies on system memory mapping + facilities, if supported. (This helps avoid carrying around and + possibly fragmenting memory used only for large chunks.) + + All operations (except malloc_stats and mallinfo) have execution + times that are bounded by a constant factor of the number of bits in + a size_t, not counting any clearing in calloc or copying in realloc, + or actions surrounding MORECORE and MMAP that have times + proportional to the number of non-contiguous regions returned by + system allocation routines, which is often just 1. In real-time + applications, you can optionally suppress segment traversals using + NO_SEGMENT_TRAVERSAL, which assures bounded execution even when + system allocators return non-contiguous spaces, at the typical + expense of carrying around more memory and increased fragmentation. + + The implementation is not very modular and seriously overuses + macros. Perhaps someday all C compilers will do as good a job + inlining modular code as can now be done by brute-force expansion, + but now, enough of them seem not to. + + Some compilers issue a lot of warnings about code that is + dead/unreachable only on some platforms, and also about intentional + uses of negation on unsigned types. All known cases of each can be + ignored. + + For a longer but out of date high-level description, see + http://gee.cs.oswego.edu/dl/html/malloc.html + +* MSPACES + If MSPACES is defined, then in addition to malloc, free, etc., + this file also defines mspace_malloc, mspace_free, etc. These + are versions of malloc routines that take an "mspace" argument + obtained using create_mspace, to control all internal bookkeeping. + If ONLY_MSPACES is defined, only these versions are compiled. + So if you would like to use this allocator for only some allocations, + and your system malloc for others, you can compile with + ONLY_MSPACES and then do something like... + static mspace mymspace = create_mspace(0,0); // for example + #define mymalloc(bytes) mspace_malloc(mymspace, bytes) + + (Note: If you only need one instance of an mspace, you can instead + use "USE_DL_PREFIX" to relabel the global malloc.) + + You can similarly create thread-local allocators by storing + mspaces as thread-locals. For example: + static __thread mspace tlms = 0; + void* tlmalloc(size_t bytes) { + if (tlms == 0) tlms = create_mspace(0, 0); + return mspace_malloc(tlms, bytes); + } + void tlfree(void* mem) { mspace_free(tlms, mem); } + + Unless FOOTERS is defined, each mspace is completely independent. + You cannot allocate from one and free to another (although + conformance is only weakly checked, so usage errors are not always + caught). If FOOTERS is defined, then each chunk carries around a tag + indicating its originating mspace, and frees are directed to their + originating spaces. Normally, this requires use of locks. + + ------------------------- Compile-time options --------------------------- + +Be careful in setting #define values for numerical constants of type +size_t. On some systems, literal values are not automatically extended +to size_t precision unless they are explicitly casted. You can also +use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. + +WIN32 default: defined if _WIN32 defined + Defining WIN32 sets up defaults for MS environment and compilers. + Otherwise defaults are for unix. Beware that there seem to be some + cases where this malloc might not be a pure drop-in replacement for + Win32 malloc: Random-looking failures from Win32 GDI API's (eg; + SetDIBits()) may be due to bugs in some video driver implementations + when pixel buffers are malloc()ed, and the region spans more than + one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) + default granularity, pixel buffers may straddle virtual allocation + regions more often than when using the Microsoft allocator. You can + avoid this by using VirtualAlloc() and VirtualFree() for all pixel + buffers rather than using malloc(). If this is not possible, + recompile this malloc with a larger DEFAULT_GRANULARITY. Note: + in cases where MSC and gcc (cygwin) are known to differ on WIN32, + conditions use _MSC_VER to distinguish them. + +DLMALLOC_EXPORT default: extern + Defines how public APIs are declared. If you want to export via a + Windows DLL, you might define this as + #define DLMALLOC_EXPORT extern __declspace(dllexport) + If you want a POSIX ELF shared object, you might use + #define DLMALLOC_EXPORT extern __attribute__((visibility("default"))) + +MALLOC_ALIGNMENT default: (size_t)8 + Controls the minimum alignment for malloc'ed chunks. It must be a + power of two and at least 8, even on machines for which smaller + alignments would suffice. It may be defined as larger than this + though. Note however that code and data structures are optimized for + the case of 8-byte alignment. + +MSPACES default: 0 (false) + If true, compile in support for independent allocation spaces. + This is only supported if HAVE_MMAP is true. + +ONLY_MSPACES default: 0 (false) + If true, only compile in mspace versions, not regular versions. + +USE_LOCKS default: 0 (false) + Causes each call to each public routine to be surrounded with + pthread or WIN32 mutex lock/unlock. (If set true, this can be + overridden on a per-mspace basis for mspace versions.) If set to a + non-zero value other than 1, locks are used, but their + implementation is left out, so lock functions must be supplied manually, + as described below. + +USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available + If true, uses custom spin locks for locking. This is currently + supported only gcc >= 4.1, older gccs on x86 platforms, and recent + MS compilers. Otherwise, posix locks or win32 critical sections are + used. + +USE_RECURSIVE_LOCKS default: not defined + If defined nonzero, uses recursive (aka reentrant) locks, otherwise + uses plain mutexes. This is not required for malloc proper, but may + be needed for layered allocators such as nedmalloc. + +FOOTERS default: 0 + If true, provide extra checking and dispatching by placing + information in the footers of allocated chunks. This adds + space and time overhead. + +INSECURE default: 0 + If true, omit checks for usage errors and heap space overwrites. + +USE_DL_PREFIX default: NOT defined + Causes compiler to prefix all public routines with the string 'dl'. + This can be useful when you only want to use this malloc in one part + of a program, using your regular system malloc elsewhere. + +MALLOC_INSPECT_ALL default: NOT defined + If defined, compiles malloc_inspect_all and mspace_inspect_all, that + perform traversal of all heap space. Unless access to these + functions is otherwise restricted, you probably do not want to + include them in secure implementations. + +ABORT default: defined as abort() + Defines how to abort on failed checks. On most systems, a failed + check cannot die with an "assert" or even print an informative + message, because the underlying print routines in turn call malloc, + which will fail again. Generally, the best policy is to simply call + abort(). It's not very useful to do more than this because many + errors due to overwriting will show up as address faults (null, odd + addresses etc) rather than malloc-triggered checks, so will also + abort. Also, most compilers know that abort() does not return, so + can better optimize code conditionally calling it. + +PROCEED_ON_ERROR default: defined as 0 (false) + Controls whether detected bad addresses cause them to bypassed + rather than aborting. If set, detected bad arguments to free and + realloc are ignored. And all bookkeeping information is zeroed out + upon a detected overwrite of freed heap space, thus losing the + ability to ever return it from malloc again, but enabling the + application to proceed. If PROCEED_ON_ERROR is defined, the + static variable malloc_corruption_error_count is compiled in + and can be examined to see if errors have occurred. This option + generates slower code than the default abort policy. + +DEBUG default: NOT defined + The DEBUG setting is mainly intended for people trying to modify + this code or diagnose problems when porting to new platforms. + However, it may also be able to better isolate user errors than just + using runtime checks. The assertions in the check routines spell + out in more detail the assumptions and invariants underlying the + algorithms. The checking is fairly extensive, and will slow down + execution noticeably. Calling malloc_stats or mallinfo with DEBUG + set will attempt to check every non-mmapped allocated and free chunk + in the course of computing the summaries. + +ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) + Debugging assertion failures can be nearly impossible if your + version of the assert macro causes malloc to be called, which will + lead to a cascade of further failures, blowing the runtime stack. + ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), + which will usually make debugging easier. + +MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 + The action to take before "return 0" when malloc fails to be able to + return memory because there is none available. + +HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES + True if this system supports sbrk or an emulation of it. + +MORECORE default: sbrk + The name of the sbrk-style system routine to call to obtain more + memory. See below for guidance on writing custom MORECORE + functions. The type of the argument to sbrk/MORECORE varies across + systems. It cannot be size_t, because it supports negative + arguments, so it is normally the signed type of the same width as + size_t (sometimes declared as "intptr_t"). It doesn't much matter + though. Internally, we only call it with arguments less than half + the max value of a size_t, which should work across all reasonable + possibilities, although sometimes generating compiler warnings. + +MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE + If true, take advantage of fact that consecutive calls to MORECORE + with positive arguments always return contiguous increasing + addresses. This is true of unix sbrk. It does not hurt too much to + set it true anyway, since malloc copes with non-contiguities. + Setting it false when definitely non-contiguous saves time + and possibly wasted space it would take to discover this though. + +MORECORE_CANNOT_TRIM default: NOT defined + True if MORECORE cannot release space back to the system when given + negative arguments. This is generally necessary only if you are + using a hand-crafted MORECORE function that cannot handle negative + arguments. + +NO_SEGMENT_TRAVERSAL default: 0 + If non-zero, suppresses traversals of memory segments + returned by either MORECORE or CALL_MMAP. This disables + merging of segments that are contiguous, and selectively + releasing them to the OS if unused, but bounds execution times. + +HAVE_MMAP default: 1 (true) + True if this system supports mmap or an emulation of it. If so, and + HAVE_MORECORE is not true, MMAP is used for all system + allocation. If set and HAVE_MORECORE is true as well, MMAP is + primarily used to directly allocate very large blocks. It is also + used as a backup strategy in cases where MORECORE fails to provide + space from system. Note: A single call to MUNMAP is assumed to be + able to unmap memory that may have be allocated using multiple calls + to MMAP, so long as they are adjacent. + +HAVE_MREMAP default: 1 on linux, else 0 + If true realloc() uses mremap() to re-allocate large blocks and + extend or shrink allocation spaces. + +MMAP_CLEARS default: 1 except on WINCE. + True if mmap clears memory so calloc doesn't need to. This is true + for standard unix mmap using /dev/zero and on WIN32 except for WINCE. + +USE_BUILTIN_FFS default: 0 (i.e., not used) + Causes malloc to use the builtin ffs() function to compute indices. + Some compilers may recognize and intrinsify ffs to be faster than the + supplied C version. Also, the case of x86 using gcc is special-cased + to an asm instruction, so is already as fast as it can be, and so + this setting has no effect. Similarly for Win32 under recent MS compilers. + (On most x86s, the asm version is only slightly faster than the C version.) + +malloc_getpagesize default: derive from system includes, or 4096. + The system page size. To the extent possible, this malloc manages + memory from the system in page-size units. This may be (and + usually is) a function rather than a constant. This is ignored + if WIN32, where page size is determined using getSystemInfo during + initialization. + +USE_DEV_RANDOM default: 0 (i.e., not used) + Causes malloc to use /dev/random to initialize secure magic seed for + stamping footers. Otherwise, the current time is used. + +NO_MALLINFO default: 0 + If defined, don't compile "mallinfo". This can be a simple way + of dealing with mismatches between system declarations and + those in this file. + +MALLINFO_FIELD_TYPE default: size_t + The type of the fields in the mallinfo struct. This was originally + defined as "int" in SVID etc, but is more usefully defined as + size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set + +NO_MALLOC_STATS default: 0 + If defined, don't compile "malloc_stats". This avoids calls to + fprintf and bringing in stdio dependencies you might not want. + +REALLOC_ZERO_BYTES_FREES default: not defined + This should be set if a call to realloc with zero bytes should + be the same as a call to free. Some people think it should. Otherwise, + since this malloc returns a unique pointer for malloc(0), so does + realloc(p, 0). + +LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H +LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H +LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32 + Define these if your system does not have these header files. + You might need to manually insert some of the declarations they provide. + +DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, + system_info.dwAllocationGranularity in WIN32, + otherwise 64K. + Also settable using mallopt(M_GRANULARITY, x) + The unit for allocating and deallocating memory from the system. On + most systems with contiguous MORECORE, there is no reason to + make this more than a page. However, systems with MMAP tend to + either require or encourage larger granularities. You can increase + this value to prevent system allocation functions to be called so + often, especially if they are slow. The value must be at least one + page and must be a power of two. Setting to 0 causes initialization + to either page size or win32 region size. (Note: In previous + versions of malloc, the equivalent of this option was called + "TOP_PAD") + +DEFAULT_TRIM_THRESHOLD default: 2MB + Also settable using mallopt(M_TRIM_THRESHOLD, x) + The maximum amount of unused top-most memory to keep before + releasing via malloc_trim in free(). Automatic trimming is mainly + useful in long-lived programs using contiguous MORECORE. Because + trimming via sbrk can be slow on some systems, and can sometimes be + wasteful (in cases where programs immediately afterward allocate + more large chunks) the value should be high enough so that your + overall system performance would improve by releasing this much + memory. As a rough guide, you might set to a value close to the + average size of a process (program) running on your system. + Releasing this much memory would allow such a process to run in + memory. Generally, it is worth tuning trim thresholds when a + program undergoes phases where several large chunks are allocated + and released in ways that can reuse each other's storage, perhaps + mixed with phases where there are no such chunks at all. The trim + value must be greater than page size to have any useful effect. To + disable trimming completely, you can set to MAX_SIZE_T. Note that the trick + some people use of mallocing a huge space and then freeing it at + program startup, in an attempt to reserve system memory, doesn't + have the intended effect under automatic trimming, since that memory + will immediately be returned to the system. + +DEFAULT_MMAP_THRESHOLD default: 256K + Also settable using mallopt(M_MMAP_THRESHOLD, x) + The request size threshold for using MMAP to directly service a + request. Requests of at least this size that cannot be allocated + using already-existing space will be serviced via mmap. (If enough + normal freed space already exists it is used instead.) Using mmap + segregates relatively large chunks of memory so that they can be + individually obtained and released from the host system. A request + serviced through mmap is never reused by any other request (at least + not directly; the system may just so happen to remap successive + requests to the same locations). Segregating space in this way has + the benefits that: Mmapped space can always be individually released + back to the system, which helps keep the system level memory demands + of a long-lived program low. Also, mapped memory doesn't become + `locked' between other chunks, as can happen with normally allocated + chunks, which means that even trimming via malloc_trim would not + release them. However, it has the disadvantage that the space + cannot be reclaimed, consolidated, and then used to service later + requests, as happens with normal chunks. The advantages of mmap + nearly always outweigh disadvantages for "large" chunks, but the + value of "large" may vary across systems. The default is an + empirically derived value that works well in most systems. You can + disable mmap by setting to MAX_SIZE_T. + +MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP + The number of consolidated frees between checks to release + unused segments when freeing. When using non-contiguous segments, + especially with multiple mspaces, checking only for topmost space + doesn't always suffice to trigger trimming. To compensate for this, + free() will, with a period of MAX_RELEASE_CHECK_RATE (or the + current number of segments, if greater) try to release unused + segments to the OS when freeing chunks that result in + consolidation. The best value for this parameter is a compromise + between slowing down frees with relatively costly checks that + rarely trigger versus holding on to unused memory. To effectively + disable, set to MAX_SIZE_T. This may lead to a very slight speed + improvement at the expense of carrying around more memory. +*/ + + +/* + ======================================================================== + To make a fully customizable malloc.h header file, cut everything + above this line, put into file malloc.h, edit to suit, and #include it + on the next line, as well as in programs that use this malloc. + ======================================================================== +*/ + +#include "_dlmalloc.h" + +/*------------------------------ internal #includes ---------------------- */ + +#ifdef _MSC_VER +#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ +#endif /* _MSC_VER */ +#if !NO_MALLOC_STATS +#include <stdio.h> /* for printing in malloc_stats */ +#endif /* NO_MALLOC_STATS */ +#ifndef LACKS_ERRNO_H +#include <errno.h> /* for MALLOC_FAILURE_ACTION */ +#endif /* LACKS_ERRNO_H */ +#ifdef DEBUG +#if ABORT_ON_ASSERT_FAILURE +#undef assert +#define assert(x) if(!(x)) ABORT +#else /* ABORT_ON_ASSERT_FAILURE */ +#include <assert.h> +#endif /* ABORT_ON_ASSERT_FAILURE */ +#else /* DEBUG */ +#ifndef assert +#define assert(x) +#endif +#define DEBUG 0 +#endif /* DEBUG */ +#if !defined(WIN32) && !defined(LACKS_TIME_H) +#include <time.h> /* for magic initialization */ +#endif /* WIN32 */ +#ifndef LACKS_STDLIB_H +#include <stdlib.h> /* for abort() */ +#endif /* LACKS_STDLIB_H */ +#ifndef LACKS_STRING_H +#include <string.h> /* for memset etc */ +#endif /* LACKS_STRING_H */ +#if USE_BUILTIN_FFS +#ifndef LACKS_STRINGS_H +#include <strings.h> /* for ffs */ +#endif /* LACKS_STRINGS_H */ +#endif /* USE_BUILTIN_FFS */ +#if HAVE_MMAP +#ifndef LACKS_SYS_MMAN_H +/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ +#if (defined(linux) && !defined(__USE_GNU)) +#define __USE_GNU 1 +#include <sys/mman.h> /* for mmap */ +#undef __USE_GNU +#else +#include <sys/mman.h> /* for mmap */ +#endif /* linux */ +#endif /* LACKS_SYS_MMAN_H */ +#ifndef LACKS_FCNTL_H +#include <fcntl.h> +#endif /* LACKS_FCNTL_H */ +#endif /* HAVE_MMAP */ +#ifndef LACKS_UNISTD_H +#include <unistd.h> /* for sbrk, sysconf */ +#else /* LACKS_UNISTD_H */ +#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) +extern void* sbrk(ptrdiff_t); +#endif /* FreeBSD etc */ +#endif /* LACKS_UNISTD_H */ + +/* Declarations for locking */ +#if USE_LOCKS +#ifndef WIN32 +#if defined (__SVR4) && defined (__sun) /* solaris */ +#include <thread.h> +#elif !defined(LACKS_SCHED_H) +#include <sched.h> +#endif /* solaris or LACKS_SCHED_H */ +#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS +#include <pthread.h> +#endif /* USE_RECURSIVE_LOCKS ... */ +#elif defined(_MSC_VER) +#ifndef _M_AMD64 +/* These are already defined on AMD64 builds */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); +LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); +#ifdef __cplusplus +} +#endif /* __cplusplus */ +#endif /* _M_AMD64 */ +#pragma intrinsic (_InterlockedCompareExchange) +#pragma intrinsic (_InterlockedExchange) +#define interlockedcompareexchange _InterlockedCompareExchange +#define interlockedexchange _InterlockedExchange +#elif defined(WIN32) && defined(__GNUC__) +#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) +#define interlockedexchange __sync_lock_test_and_set +#endif /* Win32 */ +#endif /* USE_LOCKS */ + +/* Declarations for bit scanning on win32 */ +#if defined(_MSC_VER) && _MSC_VER>=1300 +#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +unsigned char _BitScanForward(unsigned long *index, unsigned long mask); +unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#define BitScanForward _BitScanForward +#define BitScanReverse _BitScanReverse +#pragma intrinsic(_BitScanForward) +#pragma intrinsic(_BitScanReverse) +#endif /* BitScanForward */ +#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ + +#ifndef WIN32 +#ifndef malloc_getpagesize +# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ +# ifndef _SC_PAGE_SIZE +# define _SC_PAGE_SIZE _SC_PAGESIZE +# endif +# endif +# ifdef _SC_PAGE_SIZE +# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) +# else +# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) + extern size_t getpagesize(); +# define malloc_getpagesize getpagesize() +# else +# ifdef WIN32 /* use supplied emulation of getpagesize */ +# define malloc_getpagesize getpagesize() +# else +# ifndef LACKS_SYS_PARAM_H +# include <sys/param.h> +# endif +# ifdef EXEC_PAGESIZE +# define malloc_getpagesize EXEC_PAGESIZE +# else +# ifdef NBPG +# ifndef CLSIZE +# define malloc_getpagesize NBPG +# else +# define malloc_getpagesize (NBPG * CLSIZE) +# endif +# else +# ifdef NBPC +# define malloc_getpagesize NBPC +# else +# ifdef PAGESIZE +# define malloc_getpagesize PAGESIZE +# else /* just guess */ +# define malloc_getpagesize ((size_t)4096U) +# endif +# endif +# endif +# endif +# endif +# endif +# endif +#endif +#endif + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +/* -------------------------- MMAP preliminaries ------------------------- */ + +/* + If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and + checks to fail so compiler optimizer can delete code rather than + using so many "#if"s. +*/ + + +/* MORECORE and MMAP must return MFAIL on failure */ +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +#if HAVE_MMAP + +#ifndef WIN32 +#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) +#define MMAP_PROT (PROT_READ|PROT_WRITE) +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ + +#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) + +#else /* WIN32 */ + +/* Win32 MMAP via VirtualAlloc */ +static FORCEINLINE void* win32mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ +static FORCEINLINE void* win32direct_mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, + PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* This function supports releasing coalesed segments */ +static FORCEINLINE int win32munmap(void* ptr, size_t size) { + MEMORY_BASIC_INFORMATION minfo; + char* cptr = (char*)ptr; + while (size) { + if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) + return -1; + if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || + minfo.State != MEM_COMMIT || minfo.RegionSize > size) + return -1; + if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) + return -1; + cptr += minfo.RegionSize; + size -= minfo.RegionSize; + } + return 0; +} + +#define MMAP_DEFAULT(s) win32mmap(s) +#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) +#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) +#endif /* WIN32 */ +#endif /* HAVE_MMAP */ + +#if HAVE_MREMAP +#ifndef WIN32 +#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) +#endif /* WIN32 */ +#endif /* HAVE_MREMAP */ + +/** + * Define CALL_MORECORE + */ +#if HAVE_MORECORE + #ifdef MORECORE + #define CALL_MORECORE(S) MORECORE(S) + #else /* MORECORE */ + #define CALL_MORECORE(S) MORECORE_DEFAULT(S) + #endif /* MORECORE */ +#else /* HAVE_MORECORE */ + #define CALL_MORECORE(S) MFAIL +#endif /* HAVE_MORECORE */ + +/** + * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP + */ +#if HAVE_MMAP + #define USE_MMAP_BIT (SIZE_T_ONE) + + #ifdef MMAP + #define CALL_MMAP(s) MMAP(s) + #else /* MMAP */ + #define CALL_MMAP(s) MMAP_DEFAULT(s) + #endif /* MMAP */ + #ifdef MUNMAP + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) + #else /* MUNMAP */ + #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) + #endif /* MUNMAP */ + #ifdef DIRECT_MMAP + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #else /* DIRECT_MMAP */ + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) + #endif /* DIRECT_MMAP */ +#else /* HAVE_MMAP */ + #define USE_MMAP_BIT (SIZE_T_ZERO) + + #define MMAP(s) MFAIL + #define MUNMAP(a, s) (-1) + #define DIRECT_MMAP(s) MFAIL + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #define CALL_MMAP(s) MMAP(s) + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) +#endif /* HAVE_MMAP */ + +/** + * Define CALL_MREMAP + */ +#if HAVE_MMAP && HAVE_MREMAP + #ifdef MREMAP + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) + #else /* MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) + #endif /* MREMAP */ +#else /* HAVE_MMAP && HAVE_MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL +#endif /* HAVE_MMAP && HAVE_MREMAP */ + +/* mstate bit set if continguous morecore disabled or failed */ +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + + +/* --------------------------- Lock preliminaries ------------------------ */ + +/* + When locks are defined, there is one global lock, plus + one per-mspace lock. + + The global lock_ensures that mparams.magic and other unique + mparams values are initialized only once. It also protects + sequences of calls to MORECORE. In many cases sys_alloc requires + two calls, that should not be interleaved with calls by other + threads. This does not protect against direct calls to MORECORE + by other threads not using this lock, so there is still code to + cope the best we can on interference. + + Per-mspace locks surround calls to malloc, free, etc. + By default, locks are simple non-reentrant mutexes. + + Because lock-protected regions generally have bounded times, it is + OK to use the supplied simple spinlocks. Spinlocks are likely to + improve performance for lightly contended applications, but worsen + performance under heavy contention. + + If USE_LOCKS is > 1, the definitions of lock routines here are + bypassed, in which case you will need to define the type MLOCK_T, + and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK + and TRY_LOCK. You must also declare a + static MLOCK_T malloc_global_mutex = { initialization values };. + +*/ + +#if !USE_LOCKS +#define USE_LOCK_BIT (0U) +#define INITIAL_LOCK(l) (0) +#define DESTROY_LOCK(l) (0) +#define ACQUIRE_MALLOC_GLOBAL_LOCK() +#define RELEASE_MALLOC_GLOBAL_LOCK() + +#else +#if USE_LOCKS > 1 +/* ----------------------- User-defined locks ------------------------ */ +/* Define your own lock implementation here */ +/* #define INITIAL_LOCK(lk) ... */ +/* #define DESTROY_LOCK(lk) ... */ +/* #define ACQUIRE_LOCK(lk) ... */ +/* #define RELEASE_LOCK(lk) ... */ +/* #define TRY_LOCK(lk) ... */ +/* static MLOCK_T malloc_global_mutex = ... */ + +#elif USE_SPIN_LOCKS + +/* First, define CAS_LOCK and CLEAR_LOCK on ints */ +/* Note CAS_LOCK defined to return 0 on success */ + +#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) +#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) +#define CLEAR_LOCK(sl) __sync_lock_release(sl) + +#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) +/* Custom spin locks for older gcc on x86 */ +static FORCEINLINE int x86_cas_lock(int *sl) { + int ret; + int val = 1; + int cmp = 0; + __asm__ __volatile__ ("lock; cmpxchgl %1, %2" + : "=a" (ret) + : "r" (val), "m" (*(sl)), "0"(cmp) + : "memory", "cc"); + return ret; +} + +static FORCEINLINE void x86_clear_lock(int* sl) { + assert(*sl != 0); + int prev = 0; + int ret; + __asm__ __volatile__ ("lock; xchgl %0, %1" + : "=r" (ret) + : "m" (*(sl)), "0"(prev) + : "memory"); +} + +#define CAS_LOCK(sl) x86_cas_lock(sl) +#define CLEAR_LOCK(sl) x86_clear_lock(sl) + +#else /* Win32 MSC */ +#define CAS_LOCK(sl) interlockedexchange(sl, 1) +#define CLEAR_LOCK(sl) interlockedexchange (sl, 0) + +#endif /* ... gcc spins locks ... */ + +/* How to yield for a spin lock */ +#define SPINS_PER_YIELD 63 +#if defined(_MSC_VER) +#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ +#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) +#elif defined (__SVR4) && defined (__sun) /* solaris */ +#define SPIN_LOCK_YIELD thr_yield(); +#elif !defined(LACKS_SCHED_H) +#define SPIN_LOCK_YIELD sched_yield(); +#else +#define SPIN_LOCK_YIELD +#endif /* ... yield ... */ + +#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 +/* Plain spin locks use single word (embedded in malloc_states) */ +static int spin_acquire_lock(int *sl) { + int spins = 0; + while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { + if ((++spins & SPINS_PER_YIELD) == 0) { + SPIN_LOCK_YIELD; + } + } + return 0; +} + +#define MLOCK_T int +#define TRY_LOCK(sl) !CAS_LOCK(sl) +#define RELEASE_LOCK(sl) CLEAR_LOCK(sl) +#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) +#define INITIAL_LOCK(sl) (*sl = 0) +#define DESTROY_LOCK(sl) (0) +static MLOCK_T malloc_global_mutex = 0; + +#else /* USE_RECURSIVE_LOCKS */ +/* types for lock owners */ +#ifdef WIN32 +#define THREAD_ID_T DWORD +#define CURRENT_THREAD GetCurrentThreadId() +#define EQ_OWNER(X,Y) ((X) == (Y)) +#else +/* + Note: the following assume that pthread_t is a type that can be + initialized to (casted) zero. If this is not the case, you will need to + somehow redefine these or not use spin locks. +*/ +#define THREAD_ID_T pthread_t +#define CURRENT_THREAD pthread_self() +#define EQ_OWNER(X,Y) pthread_equal(X, Y) +#endif + +struct malloc_recursive_lock { + int sl; + unsigned int c; + THREAD_ID_T threadid; +}; + +#define MLOCK_T struct malloc_recursive_lock +static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; + +static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { + assert(lk->sl != 0); + if (--lk->c == 0) { + CLEAR_LOCK(&lk->sl); + } +} + +static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { + THREAD_ID_T mythreadid = CURRENT_THREAD; + int spins = 0; + for (;;) { + if (*((volatile int *)(&lk->sl)) == 0) { + if (!CAS_LOCK(&lk->sl)) { + lk->threadid = mythreadid; + lk->c = 1; + return 0; + } + } + else if (EQ_OWNER(lk->threadid, mythreadid)) { + ++lk->c; + return 0; + } + if ((++spins & SPINS_PER_YIELD) == 0) { + SPIN_LOCK_YIELD; + } + } +} + +static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { + THREAD_ID_T mythreadid = CURRENT_THREAD; + if (*((volatile int *)(&lk->sl)) == 0) { + if (!CAS_LOCK(&lk->sl)) { + lk->threadid = mythreadid; + lk->c = 1; + return 1; + } + } + else if (EQ_OWNER(lk->threadid, mythreadid)) { + ++lk->c; + return 1; + } + return 0; +} + +#define RELEASE_LOCK(lk) recursive_release_lock(lk) +#define TRY_LOCK(lk) recursive_try_lock(lk) +#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) +#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) +#define DESTROY_LOCK(lk) (0) +#endif /* USE_RECURSIVE_LOCKS */ + +#elif defined(WIN32) /* Win32 critical sections */ +#define MLOCK_T CRITICAL_SECTION +#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) +#define RELEASE_LOCK(lk) LeaveCriticalSection(lk) +#define TRY_LOCK(lk) TryEnterCriticalSection(lk) +#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) +#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) +#define NEED_GLOBAL_LOCK_INIT + +static MLOCK_T malloc_global_mutex; +static volatile long malloc_global_mutex_status; + +/* Use spin loop to initialize global lock */ +static void init_malloc_global_mutex() { + for (;;) { + long stat = malloc_global_mutex_status; + if (stat > 0) + return; + /* transition to < 0 while initializing, then to > 0) */ + if (stat == 0 && + interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) { + InitializeCriticalSection(&malloc_global_mutex); + interlockedexchange(&malloc_global_mutex_status,1); + return; + } + SleepEx(0, FALSE); + } +} + +#else /* pthreads-based locks */ +#define MLOCK_T pthread_mutex_t +#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) +#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) +#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) +#define INITIAL_LOCK(lk) pthread_init_lock(lk) +#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) + +#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) +/* Cope with old-style linux recursive lock initialization by adding */ +/* skipped internal declaration from pthread.h */ +extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, + int __kind)); +#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP +#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) +#endif /* USE_RECURSIVE_LOCKS ... */ + +static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; + +static int pthread_init_lock (MLOCK_T *lk) { + pthread_mutexattr_t attr; + if (pthread_mutexattr_init(&attr)) return 1; +#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 + if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; +#endif + if (pthread_mutex_init(lk, &attr)) return 1; + if (pthread_mutexattr_destroy(&attr)) return 1; + return 0; +} + +#endif /* ... lock types ... */ + +/* Common code for all lock types */ +#define USE_LOCK_BIT (2U) + +#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK +#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); +#endif + +#ifndef RELEASE_MALLOC_GLOBAL_LOCK +#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); +#endif + +#endif /* USE_LOCKS */ + +/* ----------------------- Chunk representations ------------------------ */ + +/* + (The following includes lightly edited explanations by Colin Plumb.) + + The malloc_chunk declaration below is misleading (but accurate and + necessary). It declares a "view" into memory allowing access to + necessary fields at known offsets from a given base. + + Chunks of memory are maintained using a `boundary tag' method as + originally described by Knuth. (See the paper by Paul Wilson + ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such + techniques.) Sizes of free chunks are stored both in the front of + each chunk and at the end. This makes consolidating fragmented + chunks into bigger chunks fast. The head fields also hold bits + representing whether chunks are free or in use. + + Here are some pictures to make it clearer. They are "exploded" to + show that the state of a chunk can be thought of as extending from + the high 31 bits of the head field of its header through the + prev_foot and PINUSE_BIT bit of the following chunk header. + + A chunk that's in use looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk (if P = 0) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 1| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | + +- -+ + | | + +- -+ + | : + +- size - sizeof(size_t) available payload bytes -+ + : | + chunk-> +- -+ + | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| + | Size of next chunk (may or may not be in use) | +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + And if it's free, it looks like this: + + chunk-> +- -+ + | User payload (must be in use, or we would have merged!) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 0| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Next pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Prev pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- size - sizeof(struct chunk) unused bytes -+ + : | + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| + | Size of next chunk (must be in use, or we would have merged)| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- User payload -+ + : | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |0| + +-+ + Note that since we always merge adjacent free chunks, the chunks + adjacent to a free chunk must be in use. + + Given a pointer to a chunk (which can be derived trivially from the + payload pointer) we can, in O(1) time, find out whether the adjacent + chunks are free, and if so, unlink them from the lists that they + are on and merge them with the current chunk. + + Chunks always begin on even word boundaries, so the mem portion + (which is returned to the user) is also on an even word boundary, and + thus at least double-word aligned. + + The P (PINUSE_BIT) bit, stored in the unused low-order bit of the + chunk size (which is always a multiple of two words), is an in-use + bit for the *previous* chunk. If that bit is *clear*, then the + word before the current chunk size contains the previous chunk + size, and can be used to find the front of the previous chunk. + The very first chunk allocated always has this bit set, preventing + access to non-existent (or non-owned) memory. If pinuse is set for + any given chunk, then you CANNOT determine the size of the + previous chunk, and might even get a memory addressing fault when + trying to do so. + + The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of + the chunk size redundantly records whether the current chunk is + inuse (unless the chunk is mmapped). This redundancy enables usage + checks within free and realloc, and reduces indirection when freeing + and consolidating chunks. + + Each freshly allocated chunk must have both cinuse and pinuse set. + That is, each allocated chunk borders either a previously allocated + and still in-use chunk, or the base of its memory arena. This is + ensured by making all allocations from the `lowest' part of any + found chunk. Further, no free chunk physically borders another one, + so each free chunk is known to be preceded and followed by either + inuse chunks or the ends of memory. + + Note that the `foot' of the current chunk is actually represented + as the prev_foot of the NEXT chunk. This makes it easier to + deal with alignments etc but can be very confusing when trying + to extend or adapt this code. + + The exceptions to all this are + + 1. The special chunk `top' is the top-most available chunk (i.e., + the one bordering the end of available memory). It is treated + specially. Top is never included in any bin, is used only if + no other chunk is available, and is released back to the + system if it is very large (see M_TRIM_THRESHOLD). In effect, + the top chunk is treated as larger (and thus less well + fitting) than any other available chunk. The top chunk + doesn't update its trailing size field since there is no next + contiguous chunk that would have to index off it. However, + space is still allocated for it (TOP_FOOT_SIZE) to enable + separation or merging when space is extended. + + 3. Chunks allocated via mmap, have both cinuse and pinuse bits + cleared in their head fields. Because they are allocated + one-by-one, each must carry its own prev_foot field, which is + also used to hold the offset this chunk has within its mmapped + region, which is needed to preserve alignment. Each mmapped + chunk is trailed by the first two fields of a fake next-chunk + for sake of usage checks. + +*/ + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +typedef unsigned int bindex_t; /* Described below */ +typedef unsigned int binmap_t; /* Described below */ +typedef unsigned int flag_t; /* The type of various bit flag sets */ + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#if FOOTERS +#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +#else /* FOOTERS */ +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#endif /* FOOTERS */ + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use, unless mmapped, in which case both bits are cleared. + + FLAG4_BIT is not used by this malloc, but might be useful in extensions. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG4_BIT (SIZE_T_FOUR) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define flag4inuse(p) ((p)->head & FLAG4_BIT) +#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) +#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) + +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) +#define set_flag4(p) ((p)->head |= FLAG4_BIT) +#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +/* Return true if malloced space is not necessarily cleared */ +#if MMAP_CLEARS +#define calloc_must_clear(p) (!is_mmapped(p)) +#else /* MMAP_CLEARS */ +#define calloc_must_clear(p) (1) +#endif /* MMAP_CLEARS */ + +/* ---------------------- Overlaid data structures ----------------------- */ + +/* + When chunks are not in use, they are treated as nodes of either + lists or trees. + + "Small" chunks are stored in circular doubly-linked lists, and look + like this: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space (may be 0 bytes long) . + . . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Larger chunks are kept in a form of bitwise digital trees (aka + tries) keyed on chunksizes. Because malloc_tree_chunks are only for + free chunks greater than 256 bytes, their size doesn't impose any + constraints on user chunk sizes. Each node looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to left child (child[0]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to right child (child[1]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to parent | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | bin index of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Each tree holding treenodes is a tree of unique chunk sizes. Chunks + of the same size are arranged in a circularly-linked list, with only + the oldest chunk (the next to be used, in our FIFO ordering) + actually in the tree. (Tree members are distinguished by a non-null + parent pointer.) If a chunk with the same size an an existing node + is inserted, it is linked off the existing node using pointers that + work in the same way as fd/bk pointers of small chunks. + + Each tree contains a power of 2 sized range of chunk sizes (the + smallest is 0x100 <= x < 0x180), which is is divided in half at each + tree level, with the chunks in the smaller half of the range (0x100 + <= x < 0x140 for the top nose) in the left subtree and the larger + half (0x140 <= x < 0x180) in the right subtree. This is, of course, + done by inspecting individual bits. + + Using these rules, each node's left subtree contains all smaller + sizes than its right subtree. However, the node at the root of each + subtree has no particular ordering relationship to either. (The + dividing line between the subtree sizes is based on trie relation.) + If we remove the last chunk of a given size from the interior of the + tree, we need to replace it with a leaf node. The tree ordering + rules permit a node to be replaced by any leaf below it. + + The smallest chunk in a tree (a common operation in a best-fit + allocator) can be found by walking a path to the leftmost leaf in + the tree. Unlike a usual binary tree, where we follow left child + pointers until we reach a null, here we follow the right child + pointer any time the left one is null, until we reach a leaf with + both child pointers null. The smallest chunk in the tree will be + somewhere along that path. + + The worst case number of steps to add, find, or remove a node is + bounded by the number of bits differentiating chunks within + bins. Under current bin calculations, this ranges from 6 up to 21 + (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case + is of course much better. +*/ + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + +/* ----------------------------- Segments -------------------------------- */ + +/* + Each malloc space may include non-contiguous segments, held in a + list headed by an embedded malloc_segment record representing the + top-most space. Segments also include flags holding properties of + the space. Large chunks that are directly allocated by mmap are not + included in this list. They are instead independently created and + destroyed without otherwise keeping track of them. + + Segment management mainly comes into play for spaces allocated by + MMAP. Any call to MMAP might or might not return memory that is + adjacent to an existing segment. MORECORE normally contiguously + extends the current space, so this space is almost always adjacent, + which is simpler and faster to deal with. (This is why MORECORE is + used preferentially to MMAP when both are available -- see + sys_alloc.) When allocating using MMAP, we don't use any of the + hinting mechanisms (inconsistently) supported in various + implementations of unix mmap, or distinguish reserving from + committing memory. Instead, we just ask for space, and exploit + contiguity when we get it. It is probably possible to do + better than this on some systems, but no general scheme seems + to be significantly better. + + Management entails a simpler variant of the consolidation scheme + used for chunks to reduce fragmentation -- new adjacent memory is + normally prepended or appended to an existing segment. However, + there are limitations compared to chunk consolidation that mostly + reflect the fact that segment processing is relatively infrequent + (occurring only when getting memory from system) and that we + don't expect to have huge numbers of segments: + + * Segments are not indexed, so traversal requires linear scans. (It + would be possible to index these, but is not worth the extra + overhead and complexity for most programs on most platforms.) + * New segments are only appended to old ones when holding top-most + memory; if they cannot be prepended to others, they are held in + different segments. + + Except for the top-most segment of an mstate, each segment record + is kept at the tail of its segment. Segments are added by pushing + segment records onto the list headed by &mstate.seg for the + containing mstate. + + Segment flags control allocation/merge/deallocation policies: + * If EXTERN_BIT set, then we did not allocate this segment, + and so should not try to deallocate or merge with others. + (This currently holds only for the initial segment passed + into create_mspace_with_base.) + * If USE_MMAP_BIT set, the segment may be merged with + other surrounding mmapped segments and trimmed/de-allocated + using munmap. + * If neither bit is set, then the segment was obtained using + MORECORE so can be merged with surrounding MORECORE'd segments + and deallocated/trimmed using MORECORE with negative arguments. +*/ + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) +#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Max allowed footprint + The maximum allowed bytes to allocate from system (zero means no limit) + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Trim support + Fields holding the amount of unused topmost memory that should trigger + trimming, and a counter to force periodic scanning to release unused + non-topmost segments. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. + + Extension support + A void* pointer and a size_t field that can be used to help implement + extensions to this malloc. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + size_t footprint_limit; /* zero means no limit */ + flag_t mflags; +#if USE_LOCKS + MLOCK_T mutex; /* locate lock among fields that rarely change */ +#endif /* USE_LOCKS */ + msegment seg; + void* extp; /* Unused but available for extensions */ + size_t exts; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. Note that the non-zeroness of "magic" + also serves as an initialization flag. +*/ + +struct malloc_params { + size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +/* Ensure mparams initialized */ +#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) + +#if !ONLY_MSPACES + +/* The global malloc_state used for all non-"mspace" calls */ +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) + +#endif /* !ONLY_MSPACES */ + +#define is_initialized(M) ((M)->top != 0) + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#if USE_LOCKS +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) +#else +#define disable_lock(M) +#endif + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#if HAVE_MMAP +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) +#else +#define disable_mmap(M) +#endif + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity - SIZE_T_ONE))\ + & ~(mparams.granularity - SIZE_T_ONE)) + + +/* For mmap, use granularity alignment on windows, else page-align */ +#ifdef WIN32 +#define mmap_align(S) granularity_align(S) +#else +#define mmap_align(S) page_align(S) +#endif + +/* For sys_alloc, enough padding to ensure can malloc request on success */ +#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) { + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) { + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +#ifndef MORECORE_CANNOT_TRIM +#define should_trim(M,s) ((s) > (M)->trim_check) +#else /* MORECORE_CANNOT_TRIM */ +#define should_trim(M,s) (0) +#endif /* MORECORE_CANNOT_TRIM */ + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + + +/* ------------------------------- Hooks -------------------------------- */ + +/* + PREACTION should be defined to return 0 on success, and nonzero on + failure. If you are not using locking, you can redefine these to do + anything you like. +*/ + +#if USE_LOCKS +#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) +#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } +#else /* USE_LOCKS */ + +#ifndef PREACTION +#define PREACTION(M) (0) +#endif /* PREACTION */ + +#ifndef POSTACTION +#define POSTACTION(M) +#endif /* POSTACTION */ + +#endif /* USE_LOCKS */ + +/* + CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. + USAGE_ERROR_ACTION is triggered on detected bad frees and + reallocs. The argument p is an address that might have triggered the + fault. It is ignored by the two predefined actions, but might be + useful in custom actions that try to help diagnose errors. +*/ + +#if PROCEED_ON_ERROR + +/* A count of the number of corruption errors causing resets */ +int malloc_corruption_error_count; + +/* default corruption action */ +static void reset_on_error(mstate m); + +#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) +#define USAGE_ERROR_ACTION(m, p) + +#else /* PROCEED_ON_ERROR */ + +#ifndef CORRUPTION_ERROR_ACTION +#define CORRUPTION_ERROR_ACTION(m) ABORT +#endif /* CORRUPTION_ERROR_ACTION */ + +#ifndef USAGE_ERROR_ACTION +#define USAGE_ERROR_ACTION(m,p) ABORT +#endif /* USAGE_ERROR_ACTION */ + +#endif /* PROCEED_ON_ERROR */ + + +/* -------------------------- Debugging setup ---------------------------- */ + +#if ! DEBUG + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +#else /* DEBUG */ +#define check_free_chunk(M,P) do_check_free_chunk(M,P) +#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) +#define check_top_chunk(M,P) do_check_top_chunk(M,P) +#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) +#define check_malloc_state(M) do_check_malloc_state(M) + +static void do_check_any_chunk(mstate m, mchunkptr p); +static void do_check_top_chunk(mstate m, mchunkptr p); +static void do_check_mmapped_chunk(mstate m, mchunkptr p); +static void do_check_inuse_chunk(mstate m, mchunkptr p); +static void do_check_free_chunk(mstate m, mchunkptr p); +static void do_check_malloced_chunk(mstate m, void* mem, size_t s); +static void do_check_tree(mstate m, tchunkptr t); +static void do_check_treebin(mstate m, bindex_t i); +static void do_check_smallbin(mstate m, bindex_t i); +static void do_check_malloc_state(mstate m); +static int bin_find(mstate m, mchunkptr x); +static size_t traverse_and_check(mstate m); +#endif /* DEBUG */ + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + +/* assign tree index for size S to variable I. Use x86 asm if possible */ +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_tree_index(S, I)\ +{\ + unsigned int X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K = _bit_scan_reverse (X); \ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + _BitScanReverse((DWORD *) &K, (DWORD) X);\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#else /* GNUC */ +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int Y = (unsigned int)X;\ + unsigned int N = ((Y - 0x100) >> 16) & 8;\ + unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ + N += K;\ + N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ + K = 14 - N + ((Y <<= K) >> 15);\ + I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ + }\ +} +#endif /* GNUC */ + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + +/* index corresponding to given bit. Use x86 asm if possible */ + +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + J = __builtin_ctz(X); \ + I = (bindex_t)J;\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + J = _bit_scan_forward (X); \ + I = (bindex_t)J;\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + _BitScanForward((DWORD *) &J, X);\ + I = (bindex_t)J;\ +} + +#elif USE_BUILTIN_FFS +#define compute_bit2idx(X, I) I = ffs(X)-1 + +#else +#define compute_bit2idx(X, I)\ +{\ + unsigned int Y = X - 1;\ + unsigned int K = Y >> (16-4) & 16;\ + unsigned int N = K; Y >>= K;\ + N += K = Y >> (8-3) & 8; Y >>= K;\ + N += K = Y >> (4-2) & 4; Y >>= K;\ + N += K = Y >> (2-1) & 2; Y >>= K;\ + N += K = Y >> (1-0) & 1; Y >>= K;\ + I = (bindex_t)(N + Y);\ +} +#endif /* GNUC */ + + +/* ----------------------- Runtime Check Support ------------------------- */ + +/* + For security, the main invariant is that malloc/free/etc never + writes to a static address other than malloc_state, unless static + malloc_state itself has been corrupted, which cannot occur via + malloc (because of these checks). In essence this means that we + believe all pointers, sizes, maps etc held in malloc_state, but + check all of those linked or offsetted from other embedded data + structures. These checks are interspersed with main code in a way + that tends to minimize their run-time cost. + + When FOOTERS is defined, in addition to range checking, we also + verify footer fields of inuse chunks, which can be used guarantee + that the mstate controlling malloc/free is intact. This is a + streamlined version of the approach described by William Robertson + et al in "Run-time Detection of Heap-based Overflows" LISA'03 + http://www.usenix.org/events/lisa03/tech/robertson.html The footer + of an inuse chunk holds the xor of its mstate and a random seed, + that is checked upon calls to free() and realloc(). This is + (probabalistically) unguessable from outside the program, but can be + computed by any code successfully malloc'ing any chunk, so does not + itself provide protection against code that has already broken + security through some other means. Unlike Robertson et al, we + always dynamically check addresses of all offset chunks (previous, + next, etc). This turns out to be cheaper than relying on hashes. +*/ + +#if !INSECURE +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has inuse status */ +#define ok_inuse(p) is_inuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#else /* !INSECURE */ +#define ok_address(M, a) (1) +#define ok_next(b, n) (1) +#define ok_inuse(p) (1) +#define ok_pinuse(p) (1) +#endif /* !INSECURE */ + +#if (FOOTERS && !INSECURE) +/* Check if (alleged) mstate m has expected magic field */ +#define ok_magic(M) ((M)->magic == mparams.magic) +#else /* (FOOTERS && !INSECURE) */ +#define ok_magic(M) (1) +#endif /* (FOOTERS && !INSECURE) */ + +/* In gcc, use __builtin_expect to minimize impact of checks */ +#if !INSECURE +#if defined(__GNUC__) && __GNUC__ >= 3 +#define RTCHECK(e) __builtin_expect(e, 1) +#else /* GNUC */ +#define RTCHECK(e) (e) +#endif /* GNUC */ +#else /* !INSECURE */ +#define RTCHECK(e) (1) +#endif /* !INSECURE */ + +/* macros to set up inuse chunks with or without footers */ + +#if !FOOTERS + +#define mark_inuse_foot(M,p,s) + +/* Macros for setting head/foot of non-mmapped chunks */ + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + +#else /* FOOTERS */ + +/* Set foot of inuse chunk to be xor of mstate and seed */ +#define mark_inuse_foot(M,p,s)\ + (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) + +#define get_mstate_for(p)\ + ((mstate)(((mchunkptr)((char*)(p) +\ + (chunksize(p))))->prev_foot ^ mparams.magic)) + +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ + mark_inuse_foot(M,p,s)) + +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ + mark_inuse_foot(M,p,s)) + +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + mark_inuse_foot(M, p, s)) + +#endif /* !FOOTERS */ + +/* ---------------------------- setting mparams -------------------------- */ + +/* Initialize mparams */ +static int init_mparams(void) { +#ifdef NEED_GLOBAL_LOCK_INIT + if (malloc_global_mutex_status <= 0) + init_malloc_global_mutex(); +#endif + + ACQUIRE_MALLOC_GLOBAL_LOCK(); + if (mparams.magic == 0) { + size_t magic; + size_t psize; + size_t gsize; + +#ifndef WIN32 + psize = malloc_getpagesize; + gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); +#else /* WIN32 */ + { + SYSTEM_INFO system_info; + GetSystemInfo(&system_info); + psize = system_info.dwPageSize; + gsize = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); + } +#endif /* WIN32 */ + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + if ((sizeof(size_t) != sizeof(char*)) || + (MAX_SIZE_T < MIN_CHUNK_SIZE) || + (sizeof(int) < 4) || + (MALLOC_ALIGNMENT < (size_t)8U) || + ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || + ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || + ((gsize & (gsize-SIZE_T_ONE)) != 0) || + ((psize & (psize-SIZE_T_ONE)) != 0)) + ABORT; + + mparams.granularity = gsize; + mparams.page_size = psize; + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; +#if MORECORE_CONTIGUOUS + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; +#else /* MORECORE_CONTIGUOUS */ + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; +#endif /* MORECORE_CONTIGUOUS */ + +#if !ONLY_MSPACES + /* Set up lock for main malloc area */ + gm->mflags = mparams.default_mflags; + (void)INITIAL_LOCK(&gm->mutex); +#endif + + { +#if USE_DEV_RANDOM + int fd; + unsigned char buf[sizeof(size_t)]; + /* Try to use /dev/urandom, else fall back on using time */ + if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && + read(fd, buf, sizeof(buf)) == sizeof(buf)) { + magic = *((size_t *) buf); + close(fd); + } + else +#endif /* USE_DEV_RANDOM */ +#ifdef WIN32 + magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); +#elif defined(LACKS_TIME_H) + magic = (size_t)&magic ^ (size_t)0x55555555U; +#else + magic = (size_t)(time(0) ^ (size_t)0x55555555U); +#endif + magic |= (size_t)8U; /* ensure nonzero */ + magic &= ~(size_t)7U; /* improve chances of fault for bad values */ + /* Until memory modes commonly available, use volatile-write */ + (*(volatile size_t *)(&(mparams.magic))) = magic; + } + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + return 1; +} + +/* support for mallopt */ +static int change_mparam(int param_number, int value) { + size_t val; + ensure_initialization(); + val = (value == -1)? MAX_SIZE_T : (size_t)value; + switch(param_number) { + case M_TRIM_THRESHOLD: + mparams.trim_threshold = val; + return 1; + case M_GRANULARITY: + if (val >= mparams.page_size && ((val & (val-1)) == 0)) { + mparams.granularity = val; + return 1; + } + else + return 0; + case M_MMAP_THRESHOLD: + mparams.mmap_threshold = val; + return 1; + default: + return 0; + } +} + +#if DEBUG +/* ------------------------- Debugging Support --------------------------- */ + +/* Check properties of any chunk, whether free, inuse, mmapped etc */ +static void do_check_any_chunk(mstate m, mchunkptr p) { + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); +} + +/* Check properties of top chunk */ +static void do_check_top_chunk(mstate m, mchunkptr p) { + msegmentptr sp = segment_holding(m, (char*)p); + size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ + assert(sp != 0); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(sz == m->topsize); + assert(sz > 0); + assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); + assert(pinuse(p)); + assert(!pinuse(chunk_plus_offset(p, sz))); +} + +/* Check properties of (inuse) mmapped chunks */ +static void do_check_mmapped_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); + assert(is_mmapped(p)); + assert(use_mmap(m)); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(!is_small(sz)); + assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); + assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); + assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); +} + +/* Check properties of inuse chunks */ +static void do_check_inuse_chunk(mstate m, mchunkptr p) { + do_check_any_chunk(m, p); + assert(is_inuse(p)); + assert(next_pinuse(p)); + /* If not pinuse and not mmapped, previous chunk has OK offset */ + assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); + if (is_mmapped(p)) + do_check_mmapped_chunk(m, p); +} + +/* Check properties of free chunks */ +static void do_check_free_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + mchunkptr next = chunk_plus_offset(p, sz); + do_check_any_chunk(m, p); + assert(!is_inuse(p)); + assert(!next_pinuse(p)); + assert (!is_mmapped(p)); + if (p != m->dv && p != m->top) { + if (sz >= MIN_CHUNK_SIZE) { + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(is_aligned(chunk2mem(p))); + assert(next->prev_foot == sz); + assert(pinuse(p)); + assert (next == m->top || is_inuse(next)); + assert(p->fd->bk == p); + assert(p->bk->fd == p); + } + else /* markers are always of size SIZE_T_SIZE */ + assert(sz == SIZE_T_SIZE); + } +} + +/* Check properties of malloced chunks at the point they are malloced */ +static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t sz = p->head & ~INUSE_BITS; + do_check_inuse_chunk(m, p); + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(sz >= MIN_CHUNK_SIZE); + assert(sz >= s); + /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ + assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); + } +} + +/* Check a tree and its subtrees. */ +static void do_check_tree(mstate m, tchunkptr t) { + tchunkptr head = 0; + tchunkptr u = t; + bindex_t tindex = t->index; + size_t tsize = chunksize(t); + bindex_t idx; + compute_tree_index(tsize, idx); + assert(tindex == idx); + assert(tsize >= MIN_LARGE_SIZE); + assert(tsize >= minsize_for_tree_index(idx)); + assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); + + do { /* traverse through chain of same-sized nodes */ + do_check_any_chunk(m, ((mchunkptr)u)); + assert(u->index == tindex); + assert(chunksize(u) == tsize); + assert(!is_inuse(u)); + assert(!next_pinuse(u)); + assert(u->fd->bk == u); + assert(u->bk->fd == u); + if (u->parent == 0) { + assert(u->child[0] == 0); + assert(u->child[1] == 0); + } + else { + assert(head == 0); /* only one node on chain has parent */ + head = u; + assert(u->parent != u); + assert (u->parent->child[0] == u || + u->parent->child[1] == u || + *((tbinptr*)(u->parent)) == u); + if (u->child[0] != 0) { + assert(u->child[0]->parent == u); + assert(u->child[0] != u); + do_check_tree(m, u->child[0]); + } + if (u->child[1] != 0) { + assert(u->child[1]->parent == u); + assert(u->child[1] != u); + do_check_tree(m, u->child[1]); + } + if (u->child[0] != 0 && u->child[1] != 0) { + assert(chunksize(u->child[0]) < chunksize(u->child[1])); + } + } + u = u->fd; + } while (u != t); + assert(head != 0); +} + +/* Check all the chunks in a treebin. */ +static void do_check_treebin(mstate m, bindex_t i) { + tbinptr* tb = treebin_at(m, i); + tchunkptr t = *tb; + int empty = (m->treemap & (1U << i)) == 0; + if (t == 0) + assert(empty); + if (!empty) + do_check_tree(m, t); +} + +/* Check all the chunks in a smallbin. */ +static void do_check_smallbin(mstate m, bindex_t i) { + sbinptr b = smallbin_at(m, i); + mchunkptr p = b->bk; + unsigned int empty = (m->smallmap & (1U << i)) == 0; + if (p == b) + assert(empty); + if (!empty) { + for (; p != b; p = p->bk) { + size_t size = chunksize(p); + mchunkptr q; + /* each chunk claims to be free */ + do_check_free_chunk(m, p); + /* chunk belongs in bin */ + assert(small_index(size) == i); + assert(p->bk == b || chunksize(p->bk) == chunksize(p)); + /* chunk is followed by an inuse chunk */ + q = next_chunk(p); + if (q->head != FENCEPOST_HEAD) + do_check_inuse_chunk(m, q); + } + } +} + +/* Find x in a bin. Used in other check functions. */ +static int bin_find(mstate m, mchunkptr x) { + size_t size = chunksize(x); + if (is_small(size)) { + bindex_t sidx = small_index(size); + sbinptr b = smallbin_at(m, sidx); + if (smallmap_is_marked(m, sidx)) { + mchunkptr p = b; + do { + if (p == x) + return 1; + } while ((p = p->fd) != b); + } + } + else { + bindex_t tidx; + compute_tree_index(size, tidx); + if (treemap_is_marked(m, tidx)) { + tchunkptr t = *treebin_at(m, tidx); + size_t sizebits = size << leftshift_for_tree_index(tidx); + while (t != 0 && chunksize(t) != size) { + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + sizebits <<= 1; + } + if (t != 0) { + tchunkptr u = t; + do { + if (u == (tchunkptr)x) + return 1; + } while ((u = u->fd) != t); + } + } + } + return 0; +} + +/* Traverse each chunk and check it; return total */ +static size_t traverse_and_check(mstate m) { + size_t sum = 0; + if (is_initialized(m)) { + msegmentptr s = &m->seg; + sum += m->topsize + TOP_FOOT_SIZE; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + mchunkptr lastq = 0; + assert(pinuse(q)); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + sum += chunksize(q); + if (is_inuse(q)) { + assert(!bin_find(m, q)); + do_check_inuse_chunk(m, q); + } + else { + assert(q == m->dv || bin_find(m, q)); + assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ + do_check_free_chunk(m, q); + } + lastq = q; + q = next_chunk(q); + } + s = s->next; + } + } + return sum; +} + + +/* Check all properties of malloc_state. */ +static void do_check_malloc_state(mstate m) { + bindex_t i; + size_t total; + /* check bins */ + for (i = 0; i < NSMALLBINS; ++i) + do_check_smallbin(m, i); + for (i = 0; i < NTREEBINS; ++i) + do_check_treebin(m, i); + + if (m->dvsize != 0) { /* check dv chunk */ + do_check_any_chunk(m, m->dv); + assert(m->dvsize == chunksize(m->dv)); + assert(m->dvsize >= MIN_CHUNK_SIZE); + assert(bin_find(m, m->dv) == 0); + } + + if (m->top != 0) { /* check top chunk */ + do_check_top_chunk(m, m->top); + /*assert(m->topsize == chunksize(m->top)); redundant */ + assert(m->topsize > 0); + assert(bin_find(m, m->top) == 0); + } + + total = traverse_and_check(m); + assert(total <= m->footprint); + assert(m->footprint <= m->max_footprint); +} +#endif /* DEBUG */ + +/* ----------------------------- statistics ------------------------------ */ + +#if !NO_MALLINFO +static struct mallinfo internal_mallinfo(mstate m) { + struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + ensure_initialization(); + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!is_inuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + + nm.arena = sum; + nm.ordblks = nfree; + nm.hblkhd = m->footprint - sum; + nm.usmblks = m->max_footprint; + nm.uordblks = m->footprint - mfree; + nm.fordblks = mfree; + nm.keepcost = m->topsize; + } + + POSTACTION(m); + } + return nm; +} +#endif /* !NO_MALLINFO */ + +#if !NO_MALLOC_STATS +static void internal_malloc_stats(mstate m) { + ensure_initialization(); + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!is_inuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + POSTACTION(m); /* drop lock */ + fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); + fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); + fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); + } +} +#endif /* NO_MALLOC_STATS */ + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ + if (B == F) {\ + clear_smallmap(M, I);\ + }\ + else if (RTCHECK(B == smallbin_at(M,I) ||\ + (ok_address(M, B) && B->fd == P))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F) {\ + clear_smallmap(M, I);\ + }\ + else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + assert(is_small(DVS));\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or + right), to make sure that lefts and rights of descendents + correspond properly to bit masks. We use the rightmost descendent + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* Relays to internal calls to malloc/free from realloc, memalign etc */ + +#if ONLY_MSPACES +#define internal_malloc(m, b) mspace_malloc(m, b) +#define internal_free(m, mem) mspace_free(m,mem); +#else /* ONLY_MSPACES */ +#if MSPACES +#define internal_malloc(m, b)\ + ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) +#define internal_free(m, mem)\ + if (m == gm) dlfree(mem); else mspace_free(m,mem); +#else /* MSPACES */ +#define internal_malloc(m, b) dlmalloc(b) +#define internal_free(m, mem) dlfree(mem) +#endif /* MSPACES */ +#endif /* ONLY_MSPACES */ + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) { + size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (m->footprint_limit != 0) { + size_t fp = m->footprint + mmsize; + if (fp <= m->footprint || fp > m->footprint_limit) + return 0; + } + if (mmsize > nb) { /* Check for wrap around 0 */ + char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); + if (mm != CMFAIL) { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset; + p->head = psize; + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (m->least_addr == 0 || mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { + size_t oldsize = chunksize(oldp); + flags = flags; /* placate people compiling -Wunused */ + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else { + size_t offset = oldp->prev_foot; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, flags); + if (cp != CMFAIL) { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = psize; + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) { + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) { + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +#if PROCEED_ON_ERROR + +/* default corruption action */ +static void reset_on_error(mstate m) { + int i; + ++malloc_corruption_error_count; + /* Reinitialize fields to forget about all memory */ + m->smallmap = m->treemap = 0; + m->dvsize = m->topsize = 0; + m->seg.base = 0; + m->seg.size = 0; + m->seg.next = 0; + m->top = m->dv = 0; + for (i = 0; i < NTREEBINS; ++i) + *treebin_at(m, i) = 0; + init_bins(m); +} +#endif /* PROCEED_ON_ERROR */ + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) { + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!is_inuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmapped; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) { + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + size_t asize; /* allocation size */ + + ensure_initialization(); + + /* Directly map large chunks, but only if already initialized */ + if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + asize = granularity_align(nb + SYS_ALLOC_PADDING); + if (asize <= nb) + return 0; /* wraparound */ + if (m->footprint_limit != 0) { + size_t fp = m->footprint + asize; + if (fp <= m->footprint || fp > m->footprint_limit) + return 0; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + + In all cases, we need to request enough bytes from system to ensure + we can malloc nb bytes upon success, so pad with enough space for + top_foot, plus alignment-pad to make sure we don't lose bytes if + not on boundary, and round this up to a granularity unit. + */ + + if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { + char* br = CMFAIL; + msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); + ACQUIRE_MALLOC_GLOBAL_LOCK(); + + if (ss == 0) { /* First time through or recovery */ + char* base = (char*)CALL_MORECORE(0); + if (base != CMFAIL) { + size_t fp; + /* Adjust to end on a page boundary */ + if (!is_page_aligned(base)) + asize += (page_align((size_t)base) - (size_t)base); + fp = m->footprint + asize; /* recheck limits */ + if (asize > nb && asize < HALF_MAX_SIZE_T && + (m->footprint_limit == 0 || + (fp > m->footprint && fp <= m->footprint_limit)) && + (br = (char*)(CALL_MORECORE(asize))) == base) { + tbase = base; + tsize = asize; + } + } + } + else { + /* Subtract out existing available top space from MORECORE request. */ + asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); + /* Use mem here only if it did continuously extend old space */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { + tbase = br; + tsize = asize; + } + } + + if (tbase == CMFAIL) { /* Cope with partial failure */ + if (br != CMFAIL) { /* Try to use/extend the space we did get */ + if (asize < HALF_MAX_SIZE_T && + asize < nb + SYS_ALLOC_PADDING) { + size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize); + if (esize < HALF_MAX_SIZE_T) { + char* end = (char*)CALL_MORECORE(esize); + if (end != CMFAIL) + asize += esize; + else { /* Can't use; try to release */ + (void) CALL_MORECORE(-asize); + br = CMFAIL; + } + } + } + } + if (br != CMFAIL) { /* Use the space we did get */ + tbase = br; + tsize = asize; + } + else + disable_contiguous(m); /* Don't try contiguous path in the future */ + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + } + + if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ + char* mp = (char*)(CALL_MMAP(asize)); + if (mp != CMFAIL) { + tbase = mp; + tsize = asize; + mmap_flag = USE_MMAP_BIT; + } + } + + if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ + if (asize < HALF_MAX_SIZE_T) { + char* br = CMFAIL; + char* end = CMFAIL; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + br = (char*)(CALL_MORECORE(asize)); + end = (char*)(CALL_MORECORE(0)); + RELEASE_MALLOC_GLOBAL_LOCK(); + if (br != CMFAIL && end != CMFAIL && br < end) { + size_t ssize = end - br; + if (ssize > nb + TOP_FOOT_SIZE) { + tbase = br; + tsize = ssize; + } + } + } + } + + if (tbase != CMFAIL) { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) { /* first-time initialization */ + if (m->least_addr == 0 || tbase < m->least_addr) + m->least_addr = tbase; + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmap_flag; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + init_bins(m); +#if !ONLY_MSPACES + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else +#endif + { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + + else { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + /* Only consider most recent segment if traversal suppressed */ + while (sp != 0 && tbase != sp->base + sp->size) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag && + segment_holds(sp, m->top)) { /* append */ + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag) { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) { /* Allocate from new or extended top space */ + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + + MALLOC_FAILURE_ACTION; + return 0; +} + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) { + size_t released = 0; + int nsegs = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + ++nsegs; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ + break; + pred = sp; + sp = next; + } + /* Reset check counter */ + m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? + nsegs : MAX_RELEASE_CHECK_RATE); + return released; +} + +static int sys_trim(mstate m, size_t pad) { + size_t released = 0; + ensure_initialization(); + if (pad < MAX_REQUEST && is_initialized(m)) { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) { + if (is_mmapped_segment(sp)) { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) { /* can't shrink if pinned */ + size_t newsize = sp->size - extra; + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { + released = extra; + } + } + } + else if (HAVE_MORECORE) { + if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ + extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + { + /* Make sure end of memory is where we last set it. */ + char* old_br = (char*)(CALL_MORECORE(0)); + if (old_br == sp->base + sp->size) { + char* rel_br = (char*)(CALL_MORECORE(-extra)); + char* new_br = (char*)(CALL_MORECORE(0)); + if (rel_br != CMFAIL && new_br < old_br) + released = old_br - new_br; + } + } + RELEASE_MALLOC_GLOBAL_LOCK(); + } + } + + if (released != 0) { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0 && m->topsize > m->trim_check) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + +/* Consolidate and bin a chunk. Differs from exported versions + of free mainly in that the chunk need not be marked as inuse. +*/ +static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + mchunkptr prev; + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + m->footprint -= psize; + return; + } + prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ + if (p != m->dv) { + unlink_chunk(m, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + m->dvsize = psize; + set_free_with_pinuse(p, psize, next); + return; + } + } + else { + CORRUPTION_ERROR_ACTION(m); + return; + } + } + if (RTCHECK(ok_address(m, next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == m->top) { + size_t tsize = m->topsize += psize; + m->top = p; + p->head = tsize | PINUSE_BIT; + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + return; + } + else if (next == m->dv) { + size_t dsize = m->dvsize += psize; + m->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + return; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(m, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == m->dv) { + m->dvsize = psize; + return; + } + } + } + else { + set_free_with_pinuse(p, psize, next); + } + insert_chunk(m, p, psize); + } + else { + CORRUPTION_ERROR_ACTION(m); + } +} + +/* ---------------------------- malloc --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) { + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +#if !ONLY_MSPACES + +void* dlmalloc(size_t bytes) { + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + +#if USE_LOCKS + ensure_initialization(); /* initialize in sys_alloc if not using locks */ +#endif + + if (!PREACTION(gm)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb > gm->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + +/* ---------------------------- free --------------------------- */ + +void dlfree(void* mem) { + /* + Consolidate freed chunks with preceeding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } +#else /* FOOTERS */ +#define fm gm +#endif /* FOOTERS */ + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#if !FOOTERS +#undef fm +#endif /* FOOTERS */ +} + +void* dlcalloc(size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = dlmalloc(req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +#endif /* !ONLY_MSPACES */ + +/* ------------ Internal support for realloc, memalign, etc -------------- */ + +/* Try to realloc; only in-place unless can_move true */ +static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, + int can_move) { + mchunkptr newp = 0; + size_t oldsize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, oldsize); + if (RTCHECK(ok_address(m, p) && ok_inuse(p) && + ok_next(p, next) && ok_pinuse(next))) { + if (is_mmapped(p)) { + newp = mmap_resize(m, p, nb, can_move); + } + else if (oldsize >= nb) { /* already big enough */ + size_t rsize = oldsize - nb; + if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + else if (next == m->top) { /* extend into top */ + if (oldsize + m->topsize > nb) { + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = p; + } + } + else if (next == m->dv) { /* extend into dv */ + size_t dvs = m->dvsize; + if (oldsize + dvs >= nb) { + size_t dsize = oldsize + dvs - nb; + if (dsize >= MIN_CHUNK_SIZE) { + mchunkptr r = chunk_plus_offset(p, nb); + mchunkptr n = chunk_plus_offset(r, dsize); + set_inuse(m, p, nb); + set_size_and_pinuse_of_free_chunk(r, dsize); + clear_pinuse(n); + m->dvsize = dsize; + m->dv = r; + } + else { /* exhaust dv */ + size_t newsize = oldsize + dvs; + set_inuse(m, p, newsize); + m->dvsize = 0; + m->dv = 0; + } + newp = p; + } + } + else if (!cinuse(next)) { /* extend into next free chunk */ + size_t nextsize = chunksize(next); + if (oldsize + nextsize >= nb) { + size_t rsize = oldsize + nextsize - nb; + unlink_chunk(m, next, nextsize); + if (rsize < MIN_CHUNK_SIZE) { + size_t newsize = oldsize + nextsize; + set_inuse(m, p, newsize); + } + else { + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + } + } + else { + USAGE_ERROR_ACTION(m, oldmem); + } + return newp; +} + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { + void* mem = 0; + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ + MALLOC_FAILURE_ACTION; + } + } + else { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + mem = internal_malloc(m, req); + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (PREACTION(m)) + return 0; + if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = newsize; + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + dispose_chunk(m, p, leadsize); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + dispose_chunk(m, remainder, remainder_size); + } + } + + mem = chunk2mem(p); + assert (chunksize(p) >= nb); + assert(((size_t)mem & (alignment - 1)) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + } + } + return mem; +} + +/* + Common support for independent_X routines, handling + all of the combinations that can result. + The opts arg has: + bit 0 set if all elements are same size (using sizes[0]) + bit 1 set if elements should be zeroed +*/ +static void** ialloc(mstate m, + size_t n_elements, + size_t* sizes, + int opts, + void* chunks[]) { + + size_t element_size; /* chunksize of each element, if all same */ + size_t contents_size; /* total size of elements */ + size_t array_size; /* request size of pointer array */ + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + void** marray; /* either "chunks" or malloced ptr array */ + mchunkptr array_chunk; /* chunk for malloced ptr array */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t i; + + ensure_initialization(); + /* compute array length, if needed */ + if (chunks != 0) { + if (n_elements == 0) + return chunks; /* nothing to do */ + marray = chunks; + array_size = 0; + } + else { + /* if empty req, must still return chunk representing empty array */ + if (n_elements == 0) + return (void**)internal_malloc(m, 0); + marray = 0; + array_size = request2size(n_elements * (sizeof(void*))); + } + + /* compute total element size */ + if (opts & 0x1) { /* all-same-size */ + element_size = request2size(*sizes); + contents_size = n_elements * element_size; + } + else { /* add up all the sizes */ + element_size = 0; + contents_size = 0; + for (i = 0; i != n_elements; ++i) + contents_size += request2size(sizes[i]); + } + + size = contents_size + array_size; + + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + mem = internal_malloc(m, size - CHUNK_OVERHEAD); + if (was_enabled) + enable_mmap(m); + if (mem == 0) + return 0; + + if (PREACTION(m)) return 0; + p = mem2chunk(mem); + remainder_size = chunksize(p); + + assert(!is_mmapped(p)); + + if (opts & 0x2) { /* optionally clear the elements */ + memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); + } + + /* If not provided, allocate the pointer array as final part of chunk */ + if (marray == 0) { + size_t array_chunk_size; + array_chunk = chunk_plus_offset(p, contents_size); + array_chunk_size = remainder_size - contents_size; + marray = (void**) (chunk2mem(array_chunk)); + set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); + remainder_size = contents_size; + } + + /* split out elements */ + for (i = 0; ; ++i) { + marray[i] = chunk2mem(p); + if (i != n_elements-1) { + if (element_size != 0) + size = element_size; + else + size = request2size(sizes[i]); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + } + else { /* the final element absorbs any overallocation slop */ + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + break; + } + } + +#if DEBUG + if (marray != chunks) { + /* final element must have exactly exhausted chunk */ + if (element_size != 0) { + assert(remainder_size == element_size); + } + else { + assert(remainder_size == request2size(sizes[i])); + } + check_inuse_chunk(m, mem2chunk(marray)); + } + for (i = 0; i != n_elements; ++i) + check_inuse_chunk(m, mem2chunk(marray[i])); + +#endif /* DEBUG */ + + POSTACTION(m); + return marray; +} + +/* Try to free all pointers in the given array. + Note: this could be made faster, by delaying consolidation, + at the price of disabling some user integrity checks, We + still optimize some consolidations by combining adjacent + chunks before freeing, which will occur often if allocated + with ialloc or the array is sorted. +*/ +static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { + size_t unfreed = 0; + if (!PREACTION(m)) { + void** a; + void** fence = &(array[nelem]); + for (a = array; a != fence; ++a) { + void* mem = *a; + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t psize = chunksize(p); +#if FOOTERS + if (get_mstate_for(p) != m) { + ++unfreed; + continue; + } +#endif + check_inuse_chunk(m, p); + *a = 0; + if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { + void ** b = a + 1; /* try to merge with next chunk */ + mchunkptr next = next_chunk(p); + if (b != fence && *b == chunk2mem(next)) { + size_t newsize = chunksize(next) + psize; + set_inuse(m, p, newsize); + *b = chunk2mem(p); + } + else + dispose_chunk(m, p, psize); + } + else { + CORRUPTION_ERROR_ACTION(m); + break; + } + } + } + if (should_trim(m, m->topsize)) + sys_trim(m, 0); + POSTACTION(m); + } + return unfreed; +} + +/* Traversal */ +#if MALLOC_INSPECT_ALL +static void internal_inspect_all(mstate m, + void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + if (is_initialized(m)) { + mchunkptr top = m->top; + msegmentptr s; + for (s = &m->seg; s != 0; s = s->next) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { + mchunkptr next = next_chunk(q); + size_t sz = chunksize(q); + size_t used; + void* start; + if (is_inuse(q)) { + used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ + start = chunk2mem(q); + } + else { + used = 0; + if (is_small(sz)) { /* offset by possible bookkeeping */ + start = (void*)((char*)q + sizeof(malloc_chunk)); + } + else { + start = (void*)((char*)q + sizeof(malloc_tree_chunk)); + } + } + if (start < (void*)next) /* skip if all space is bookkeeping */ + handler(start, next, used, arg); + if (q == top) + break; + q = next; + } + } + } +} +#endif /* MALLOC_INSPECT_ALL */ + +/* ------------------ Exported realloc, memalign, etc -------------------- */ + +#if !ONLY_MSPACES + +void* dlrealloc(void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem == 0) { + mem = dlmalloc(bytes); + } + else if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } +#ifdef REALLOC_ZERO_BYTES_FREES + else if (bytes == 0) { + dlfree(oldmem); + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); + POSTACTION(m); + if (newp != 0) { + check_inuse_chunk(m, newp); + mem = chunk2mem(newp); + } + else { + mem = internal_malloc(m, bytes); + if (mem != 0) { + size_t oc = chunksize(oldp) - overhead_for(oldp); + memcpy(mem, oldmem, (oc < bytes)? oc : bytes); + internal_free(m, oldmem); + } + } + } + } + return mem; +} + +void* dlrealloc_in_place(void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem != 0) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); + POSTACTION(m); + if (newp == oldp) { + check_inuse_chunk(m, newp); + mem = oldmem; + } + } + } + } + return mem; +} + +void* dlmemalign(size_t alignment, size_t bytes) { + if (alignment <= MALLOC_ALIGNMENT) { + return dlmalloc(bytes); + } + return internal_memalign(gm, alignment, bytes); +} + +int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { + void* mem = 0; + if (alignment == MALLOC_ALIGNMENT) + mem = dlmalloc(bytes); + else { + size_t d = alignment / sizeof(void*); + size_t r = alignment % sizeof(void*); + if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) + return EINVAL; + else if (bytes >= MAX_REQUEST - alignment) { + if (alignment < MIN_CHUNK_SIZE) + alignment = MIN_CHUNK_SIZE; + mem = internal_memalign(gm, alignment, bytes); + } + } + if (mem == 0) + return ENOMEM; + else { + *pp = mem; + return 0; + } +} + +void* dlvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, bytes); +} + +void* dlpvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); +} + +void** dlindependent_calloc(size_t n_elements, size_t elem_size, + void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + return ialloc(gm, n_elements, &sz, 3, chunks); +} + +void** dlindependent_comalloc(size_t n_elements, size_t sizes[], + void* chunks[]) { + return ialloc(gm, n_elements, sizes, 0, chunks); +} + +size_t dlbulk_free(void* array[], size_t nelem) { + return internal_bulk_free(gm, array, nelem); +} + +#if MALLOC_INSPECT_ALL +void dlmalloc_inspect_all(void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + ensure_initialization(); + if (!PREACTION(gm)) { + internal_inspect_all(gm, handler, arg); + POSTACTION(gm); + } +} +#endif /* MALLOC_INSPECT_ALL */ + +int dlmalloc_trim(size_t pad) { + int result = 0; + ensure_initialization(); + if (!PREACTION(gm)) { + result = sys_trim(gm, pad); + POSTACTION(gm); + } + return result; +} + +size_t dlmalloc_footprint(void) { + return gm->footprint; +} + +size_t dlmalloc_max_footprint(void) { + return gm->max_footprint; +} + +size_t dlmalloc_footprint_limit(void) { + size_t maf = gm->footprint_limit; + return maf == 0 ? MAX_SIZE_T : maf; +} + +size_t dlmalloc_set_footprint_limit(size_t bytes) { + size_t result; /* invert sense of 0 */ + if (bytes == 0) + result = granularity_align(1); /* Use minimal size */ + if (bytes == MAX_SIZE_T) + result = 0; /* disable */ + else + result = granularity_align(bytes); + return gm->footprint_limit = result; +} + +#if !NO_MALLINFO +struct mallinfo dlmallinfo(void) { + return internal_mallinfo(gm); +} +#endif /* NO_MALLINFO */ + +#if !NO_MALLOC_STATS +void dlmalloc_stats() { + internal_malloc_stats(gm); +} +#endif /* NO_MALLOC_STATS */ + +int dlmallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +size_t dlmalloc_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +#endif /* !ONLY_MSPACES */ + +/* ----------------------------- user mspaces ---------------------------- */ + +#if MSPACES + +static mstate init_user_mstate(char* tbase, size_t tsize) { + size_t msize = pad_request(sizeof(struct malloc_state)); + mchunkptr mn; + mchunkptr msp = align_as_chunk(tbase); + mstate m = (mstate)(chunk2mem(msp)); + memset(m, 0, msize); + (void)INITIAL_LOCK(&m->mutex); + msp->head = (msize|INUSE_BITS); + m->seg.base = m->least_addr = tbase; + m->seg.size = m->footprint = m->max_footprint = tsize; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + m->mflags = mparams.default_mflags; + m->extp = 0; + m->exts = 0; + disable_contiguous(m); + init_bins(m); + mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); + check_top_chunk(m, m->top); + return m; +} + +mspace create_mspace(size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + size_t rs = ((capacity == 0)? mparams.granularity : + (capacity + TOP_FOOT_SIZE + msize)); + size_t tsize = granularity_align(rs); + char* tbase = (char*)(CALL_MMAP(tsize)); + if (tbase != CMFAIL) { + m = init_user_mstate(tbase, tsize); + m->seg.sflags = USE_MMAP_BIT; + set_lock(m, locked); + } + } + return (mspace)m; +} + +mspace create_mspace_with_base(void* base, size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity > msize + TOP_FOOT_SIZE && + capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + m = init_user_mstate((char*)base, capacity); + m->seg.sflags = EXTERN_BIT; + set_lock(m, locked); + } + return (mspace)m; +} + +int mspace_track_large_chunks(mspace msp, int enable) { + int ret = 0; + mstate ms = (mstate)msp; + if (!PREACTION(ms)) { + if (!use_mmap(ms)) + ret = 1; + if (!enable) + enable_mmap(ms); + else + disable_mmap(ms); + POSTACTION(ms); + } + return ret; +} + +size_t destroy_mspace(mspace msp) { + size_t freed = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + msegmentptr sp = &ms->seg; + (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */ + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + flag_t flag = sp->sflags; + sp = sp->next; + if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && + CALL_MUNMAP(base, size) == 0) + freed += size; + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return freed; +} + +/* + mspace versions of routines are near-clones of the global + versions. This is not so nice but better than the alternatives. +*/ + +void* mspace_malloc(mspace msp, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + POSTACTION(ms); + return mem; + } + + return 0; +} + +void mspace_free(mspace msp, void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + msp = msp; /* placate people compiling -Wunused */ +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +} + +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = internal_malloc(ms, req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem == 0) { + mem = mspace_malloc(msp, bytes); + } + else if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } +#ifdef REALLOC_ZERO_BYTES_FREES + else if (bytes == 0) { + mspace_free(msp, oldmem); + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = (mstate)msp; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); + POSTACTION(m); + if (newp != 0) { + check_inuse_chunk(m, newp); + mem = chunk2mem(newp); + } + else { + mem = mspace_malloc(m, bytes); + if (mem != 0) { + size_t oc = chunksize(oldp) - overhead_for(oldp); + memcpy(mem, oldmem, (oc < bytes)? oc : bytes); + mspace_free(m, oldmem); + } + } + } + } + return mem; +} + +void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem != 0) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = (mstate)msp; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + msp = msp; /* placate people compiling -Wunused */ + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); + POSTACTION(m); + if (newp == oldp) { + check_inuse_chunk(m, newp); + mem = oldmem; + } + } + } + } + return mem; +} + +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (alignment <= MALLOC_ALIGNMENT) + return mspace_malloc(msp, bytes); + return internal_memalign(ms, alignment, bytes); +} + +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, &sz, 3, chunks); +} + +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, sizes, 0, chunks); +} + +size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) { + return internal_bulk_free((mstate)msp, array, nelem); +} + +#if MALLOC_INSPECT_ALL +void mspace_inspect_all(mspace msp, + void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + internal_inspect_all(ms, handler, arg); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} +#endif /* MALLOC_INSPECT_ALL */ + +int mspace_trim(mspace msp, size_t pad) { + int result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + result = sys_trim(ms, pad); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +#if !NO_MALLOC_STATS +void mspace_malloc_stats(mspace msp) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + internal_malloc_stats(ms); + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} +#endif /* NO_MALLOC_STATS */ + +size_t mspace_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_max_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->max_footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_footprint_limit(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + size_t maf = ms->footprint_limit; + result = (maf == 0) ? MAX_SIZE_T : maf; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_set_footprint_limit(mspace msp, size_t bytes) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (bytes == 0) + result = granularity_align(1); /* Use minimal size */ + if (bytes == MAX_SIZE_T) + result = 0; /* disable */ + else + result = granularity_align(bytes); + ms->footprint_limit = result; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +#if !NO_MALLINFO +struct mallinfo mspace_mallinfo(mspace msp) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + return internal_mallinfo(ms); +} +#endif /* NO_MALLINFO */ + +size_t mspace_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int mspace_mallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* MSPACES */ + + +/* -------------------- Alternative MORECORE functions ------------------- */ + +/* + Guidelines for creating a custom version of MORECORE: + + * For best performance, MORECORE should allocate in multiples of pagesize. + * MORECORE may allocate more memory than requested. (Or even less, + but this will usually result in a malloc failure.) + * MORECORE must not allocate memory when given argument zero, but + instead return one past the end address of memory from previous + nonzero call. + * For best performance, consecutive calls to MORECORE with positive + arguments should return increasing addresses, indicating that + space has been contiguously extended. + * Even though consecutive calls to MORECORE need not return contiguous + addresses, it must be OK for malloc'ed chunks to span multiple + regions in those cases where they do happen to be contiguous. + * MORECORE need not handle negative arguments -- it may instead + just return MFAIL when given negative arguments. + Negative arguments are always multiples of pagesize. MORECORE + must not misinterpret negative args as large positive unsigned + args. You can suppress all such calls from even occurring by defining + MORECORE_CANNOT_TRIM, + + As an example alternative MORECORE, here is a custom allocator + kindly contributed for pre-OSX macOS. It uses virtually but not + necessarily physically contiguous non-paged memory (locked in, + present and won't get swapped out). You can use it by uncommenting + this section, adding some #includes, and setting up the appropriate + defines above: + + #define MORECORE osMoreCore + + There is also a shutdown routine that should somehow be called for + cleanup upon program exit. + + #define MAX_POOL_ENTRIES 100 + #define MINIMUM_MORECORE_SIZE (64 * 1024U) + static int next_os_pool; + void *our_os_pools[MAX_POOL_ENTRIES]; + + void *osMoreCore(int size) + { + void *ptr = 0; + static void *sbrk_top = 0; + + if (size > 0) + { + if (size < MINIMUM_MORECORE_SIZE) + size = MINIMUM_MORECORE_SIZE; + if (CurrentExecutionLevel() == kTaskLevel) + ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); + if (ptr == 0) + { + return (void *) MFAIL; + } + // save ptrs so they can be freed during cleanup + our_os_pools[next_os_pool] = ptr; + next_os_pool++; + ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); + sbrk_top = (char *) ptr + size; + return ptr; + } + else if (size < 0) + { + // we don't currently support shrink behavior + return (void *) MFAIL; + } + else + { + return sbrk_top; + } + } + + // cleanup any allocated memory pools + // called as last thing before shutting down driver + + void osCleanupMem(void) + { + void **ptr; + + for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) + if (*ptr) + { + PoolDeallocate(*ptr); + *ptr = 0; + } + } + +*/ + + +/* ----------------------------------------------------------------------- +History: + v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) + * Always perform unlink checks unless INSECURE + * Add posix_memalign. + * Improve realloc to expand in more cases; expose realloc_in_place. + Thanks to Peter Buhr for the suggestion. + * Add footprint_limit, inspect_all, bulk_free. Thanks + to Barry Hayes and others for the suggestions. + * Internal refactorings to avoid calls while holding locks + * Use non-reentrant locks by default. Thanks to Roland McGrath + for the suggestion. + * Small fixes to mspace_destroy, reset_on_error. + * Various configuration extensions/changes. Thanks + to all who contributed these. + + V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) + * Update Creative Commons URL + + V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) + * Use zeros instead of prev foot for is_mmapped + * Add mspace_track_large_chunks; thanks to Jean Brouwers + * Fix set_inuse in internal_realloc; thanks to Jean Brouwers + * Fix insufficient sys_alloc padding when using 16byte alignment + * Fix bad error check in mspace_footprint + * Adaptations for ptmalloc; thanks to Wolfram Gloger. + * Reentrant spin locks; thanks to Earl Chew and others + * Win32 improvements; thanks to Niall Douglas and Earl Chew + * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options + * Extension hook in malloc_state + * Various small adjustments to reduce warnings on some compilers + * Various configuration extensions/changes for more platforms. Thanks + to all who contributed these. + + V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) + * Add max_footprint functions + * Ensure all appropriate literals are size_t + * Fix conditional compilation problem for some #define settings + * Avoid concatenating segments with the one provided + in create_mspace_with_base + * Rename some variables to avoid compiler shadowing warnings + * Use explicit lock initialization. + * Better handling of sbrk interference. + * Simplify and fix segment insertion, trimming and mspace_destroy + * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x + * Thanks especially to Dennis Flanagan for help on these. + + V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) + * Fix memalign brace error. + + V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) + * Fix improper #endif nesting in C++ + * Add explicit casts needed for C++ + + V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) + * Use trees for large bins + * Support mspaces + * Use segments to unify sbrk-based and mmap-based system allocation, + removing need for emulation on most platforms without sbrk. + * Default safety checks + * Optional footer checks. Thanks to William Robertson for the idea. + * Internal code refactoring + * Incorporate suggestions and platform-specific changes. + Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, + Aaron Bachmann, Emery Berger, and others. + * Speed up non-fastbin processing enough to remove fastbins. + * Remove useless cfree() to avoid conflicts with other apps. + * Remove internal memcpy, memset. Compilers handle builtins better. + * Remove some options that no one ever used and rename others. + + V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) + * Fix malloc_state bitmap array misdeclaration + + V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) + * Allow tuning of FIRST_SORTED_BIN_SIZE + * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. + * Better detection and support for non-contiguousness of MORECORE. + Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger + * Bypass most of malloc if no frees. Thanks To Emery Berger. + * Fix freeing of old top non-contiguous chunk im sysmalloc. + * Raised default trim and map thresholds to 256K. + * Fix mmap-related #defines. Thanks to Lubos Lunak. + * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. + * Branch-free bin calculation + * Default trim and mmap thresholds now 256K. + + V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) + * Introduce independent_comalloc and independent_calloc. + Thanks to Michael Pachos for motivation and help. + * Make optional .h file available + * Allow > 2GB requests on 32bit systems. + * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. + Thanks also to Andreas Mueller <a.mueller at paradatec.de>, + and Anonymous. + * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for + helping test this.) + * memalign: check alignment arg + * realloc: don't try to shift chunks backwards, since this + leads to more fragmentation in some programs and doesn't + seem to help in any others. + * Collect all cases in malloc requiring system memory into sysmalloc + * Use mmap as backup to sbrk + * Place all internal state in malloc_state + * Introduce fastbins (although similar to 2.5.1) + * Many minor tunings and cosmetic improvements + * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK + * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS + Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. + * Include errno.h to support default failure action. + + V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) + * return null for negative arguments + * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> + * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' + (e.g. WIN32 platforms) + * Cleanup header file inclusion for WIN32 platforms + * Cleanup code to avoid Microsoft Visual C++ compiler complaints + * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing + memory allocation routines + * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) + * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to + usage of 'assert' in non-WIN32 code + * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to + avoid infinite loop + * Always call 'fREe()' rather than 'free()' + + V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) + * Fixed ordering problem with boundary-stamping + + V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) + * Added pvalloc, as recommended by H.J. Liu + * Added 64bit pointer support mainly from Wolfram Gloger + * Added anonymously donated WIN32 sbrk emulation + * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen + * malloc_extend_top: fix mask error that caused wastage after + foreign sbrks + * Add linux mremap support code from HJ Liu + + V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) + * Integrated most documentation with the code. + * Add support for mmap, with help from + Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Use last_remainder in more cases. + * Pack bins using idea from colin@nyx10.cs.du.edu + * Use ordered bins instead of best-fit threshhold + * Eliminate block-local decls to simplify tracing and debugging. + * Support another case of realloc via move into top + * Fix error occuring when initial sbrk_base not word-aligned. + * Rely on page size for units instead of SBRK_UNIT to + avoid surprises about sbrk alignment conventions. + * Add mallinfo, mallopt. Thanks to Raymond Nijssen + (raymond@es.ele.tue.nl) for the suggestion. + * Add `pad' argument to malloc_trim and top_pad mallopt parameter. + * More precautions for cases where other routines call sbrk, + courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Added macros etc., allowing use in linux libc from + H.J. Lu (hjl@gnu.ai.mit.edu) + * Inverted this history list + + V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) + * Re-tuned and fixed to behave more nicely with V2.6.0 changes. + * Removed all preallocation code since under current scheme + the work required to undo bad preallocations exceeds + the work saved in good cases for most test programs. + * No longer use return list or unconsolidated bins since + no scheme using them consistently outperforms those that don't + given above changes. + * Use best fit for very large chunks to prevent some worst-cases. + * Added some support for debugging + + V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) + * Removed footers when chunks are in use. Thanks to + Paul Wilson (wilson@cs.texas.edu) for the suggestion. + + V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) + * Added malloc_trim, with help from Wolfram Gloger + (wmglo@Dent.MED.Uni-Muenchen.DE). + + V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) + + V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) + * realloc: try to expand in both directions + * malloc: swap order of clean-bin strategy; + * realloc: only conditionally expand backwards + * Try not to scavenge used bins + * Use bin counts as a guide to preallocation + * Occasionally bin return list chunks in first scan + * Add a few optimizations from colin@nyx10.cs.du.edu + + V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) + * faster bin computation & slightly different binning + * merged all consolidations to one part of malloc proper + (eliminating old malloc_find_space & malloc_clean_bin) + * Scan 2 returns chunks (not just 1) + * Propagate failure in realloc if malloc returns 0 + * Add stuff to allow compilation on non-ANSI compilers + from kpv@research.att.com + + V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) + * removed potential for odd address access in prev_chunk + * removed dependency on getpagesize.h + * misc cosmetics and a bit more internal documentation + * anticosmetics: mangled names in macros to evade debugger strangeness + * tested on sparc, hp-700, dec-mips, rs6000 + with gcc & native cc (hp, dec only) allowing + Detlefs & Zorn comparison study (in SIGPLAN Notices.) + + Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) + * Based loosely on libg++-1.2X malloc. (It retains some of the overall + structure of old version, but most details differ.) + +*/ + diff --git a/src/kernel/mem/_dlmalloc.h b/src/kernel/mem/_dlmalloc.h new file mode 100644 index 0000000..a030da2 --- /dev/null +++ b/src/kernel/mem/_dlmalloc.h @@ -0,0 +1,864 @@ +#ifndef DEF_DLMALLOC_H +#define DEF_DLMALLOC_H + +#include "lib/std.h" + +#define NO_MALLOC_STATS 1 +#define LACKS_TIME_H +#define LACKS_UNISTD_H +#define LACKS_SYS_PARAM_H + +#define USE_DL_PREFIX + + +/* Version identifier to allow people to support multiple versions */ +#ifndef DLMALLOC_VERSION +#define DLMALLOC_VERSION 20805 +#endif /* DLMALLOC_VERSION */ + +#ifndef DLMALLOC_EXPORT +#define DLMALLOC_EXPORT extern +#endif + + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */ +#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \ + (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)) +#endif /* USE_LOCKS */ + +#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */ +#if ((defined(__GNUC__) && \ + ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \ + defined(__i386__) || defined(__x86_64__))) || \ + (defined(_MSC_VER) && _MSC_VER>=1310)) +#ifndef USE_SPIN_LOCKS +#define USE_SPIN_LOCKS 1 +#endif /* USE_SPIN_LOCKS */ +#elif USE_SPIN_LOCKS +#error "USE_SPIN_LOCKS defined without implementation" +#endif /* ... locks available... */ +#elif !defined(USE_SPIN_LOCKS) +#define USE_SPIN_LOCKS 0 +#endif /* USE_LOCKS */ + +#ifndef ONLY_MSPACES +#define ONLY_MSPACES 0 +#endif /* ONLY_MSPACES */ +#ifndef MSPACES +#if ONLY_MSPACES +#define MSPACES 1 +#else /* ONLY_MSPACES */ +#define MSPACES 0 +#endif /* ONLY_MSPACES */ +#endif /* MSPACES */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)8U) +#endif /* MALLOC_ALIGNMENT */ +#ifndef FOOTERS +#define FOOTERS 0 +#endif /* FOOTERS */ +#ifndef ABORT +#define ABORT abort() +#endif /* ABORT */ +#ifndef ABORT_ON_ASSERT_FAILURE +#define ABORT_ON_ASSERT_FAILURE 1 +#endif /* ABORT_ON_ASSERT_FAILURE */ +#ifndef PROCEED_ON_ERROR +#define PROCEED_ON_ERROR 0 +#endif /* PROCEED_ON_ERROR */ + +#ifndef INSECURE +#define INSECURE 0 +#endif /* INSECURE */ +#ifndef MALLOC_INSPECT_ALL +#define MALLOC_INSPECT_ALL 0 +#endif /* MALLOC_INSPECT_ALL */ +#ifndef HAVE_MMAP +#define HAVE_MMAP 0 +#endif /* HAVE_MMAP */ +#ifndef MMAP_CLEARS +#define MMAP_CLEARS 1 +#endif /* MMAP_CLEARS */ +#ifndef HAVE_MREMAP +#ifdef linux +#define HAVE_MREMAP 1 +#define _GNU_SOURCE /* Turns on mremap() definition */ +#else /* linux */ +#define HAVE_MREMAP 0 +#endif /* linux */ +#endif /* HAVE_MREMAP */ +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION errno = ENOMEM; +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef HAVE_MORECORE +#if ONLY_MSPACES +#define HAVE_MORECORE 0 +#else /* ONLY_MSPACES */ +#define HAVE_MORECORE 1 +#endif /* ONLY_MSPACES */ +#endif /* HAVE_MORECORE */ +#if !HAVE_MORECORE +#define MORECORE_CONTIGUOUS 0 +#else /* !HAVE_MORECORE */ +#define MORECORE_DEFAULT sbrk +#ifndef MORECORE_CONTIGUOUS +#define MORECORE_CONTIGUOUS 1 +#endif /* MORECORE_CONTIGUOUS */ +#endif /* HAVE_MORECORE */ +#ifndef DEFAULT_GRANULARITY +#if (MORECORE_CONTIGUOUS || defined(WIN32)) +#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ +#else /* MORECORE_CONTIGUOUS */ +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#endif /* MORECORE_CONTIGUOUS */ +#endif /* DEFAULT_GRANULARITY */ +#ifndef DEFAULT_TRIM_THRESHOLD +#ifndef MORECORE_CANNOT_TRIM +#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) +#else /* MORECORE_CANNOT_TRIM */ +#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T +#endif /* MORECORE_CANNOT_TRIM */ +#endif /* DEFAULT_TRIM_THRESHOLD */ +#ifndef DEFAULT_MMAP_THRESHOLD +#if HAVE_MMAP +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#else /* HAVE_MMAP */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* DEFAULT_MMAP_THRESHOLD */ +#ifndef MAX_RELEASE_CHECK_RATE +#if HAVE_MMAP +#define MAX_RELEASE_CHECK_RATE 4095 +#else +#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* MAX_RELEASE_CHECK_RATE */ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 0 +#endif /* USE_BUILTIN_FFS */ +#ifndef USE_DEV_RANDOM +#define USE_DEV_RANDOM 0 +#endif /* USE_DEV_RANDOM */ +#ifndef NO_MALLINFO +#define NO_MALLINFO 0 +#endif /* NO_MALLINFO */ +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ +#ifndef NO_MALLOC_STATS +#define NO_MALLOC_STATS 0 +#endif /* NO_MALLOC_STATS */ +#ifndef NO_SEGMENT_TRAVERSAL +#define NO_SEGMENT_TRAVERSAL 0 +#endif /* NO_SEGMENT_TRAVERSAL */ + +/* + mallopt tuning options. SVID/XPG defines four standard parameter + numbers for mallopt, normally defined in malloc.h. None of these + are used in this malloc, so setting them has no effect. But this + malloc does support the following options. +*/ + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + +/* ------------------------ Mallinfo declarations ------------------------ */ + +#if !NO_MALLINFO +/* + This version of malloc supports the standard SVID/XPG mallinfo + routine that returns a struct containing usage properties and + statistics. It should work on any system that has a + /usr/include/malloc.h defining struct mallinfo. The main + declaration needed is the mallinfo struct that is returned (by-copy) + by mallinfo(). The malloinfo struct contains a bunch of fields that + are not even meaningful in this version of malloc. These fields are + are instead filled by mallinfo() with other numbers that might be of + interest. + + HAVE_USR_INCLUDE_MALLOC_H should be set if you have a + /usr/include/malloc.h file that includes a declaration of struct + mallinfo. If so, it is included; else a compliant version is + declared below. These must be precisely the same for mallinfo() to + work. The original SVID version of this struct, defined on most + systems with mallinfo, declares all fields as ints. But some others + define as unsigned long. If your system defines the fields using a + type of different width than listed here, you MUST #include your + system version and #define HAVE_USR_INCLUDE_MALLOC_H. +*/ + +/* #define HAVE_USR_INCLUDE_MALLOC_H */ + +#ifdef HAVE_USR_INCLUDE_MALLOC_H +#include "/usr/include/malloc.h" +#else /* HAVE_USR_INCLUDE_MALLOC_H */ +#ifndef STRUCT_MALLINFO_DECLARED +/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */ +#define _STRUCT_MALLINFO +#define STRUCT_MALLINFO_DECLARED 1 +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; +#endif /* STRUCT_MALLINFO_DECLARED */ +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ +#endif /* NO_MALLINFO */ + +/* + Try to persuade compilers to inline. The most critical functions for + inlining are defined as macros, so these aren't used for them. +*/ + +#ifndef FORCEINLINE + #if defined(__GNUC__) +#define FORCEINLINE __inline __attribute__ ((always_inline)) + #elif defined(_MSC_VER) + #define FORCEINLINE __forceinline + #endif +#endif +#ifndef NOINLINE + #if defined(__GNUC__) + #define NOINLINE __attribute__ ((noinline)) + #elif defined(_MSC_VER) + #define NOINLINE __declspec(noinline) + #else + #define NOINLINE + #endif +#endif + +#ifdef __cplusplus +extern "C" { +#ifndef FORCEINLINE + #define FORCEINLINE inline +#endif +#endif /* __cplusplus */ +#ifndef FORCEINLINE + #define FORCEINLINE +#endif + +#if !ONLY_MSPACES + +/* ------------------- Declarations of public routines ------------------- */ + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlposix_memalign posix_memalign +#define dlrealloc realloc +#define dlrealloc_in_place realloc_in_place +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlmalloc_max_footprint malloc_max_footprint +#define dlmalloc_footprint_limit malloc_footprint_limit +#define dlmalloc_set_footprint_limit malloc_set_footprint_limit +#define dlmalloc_inspect_all malloc_inspect_all +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#define dlbulk_free bulk_free +#endif /* USE_DL_PREFIX */ + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +DLMALLOC_EXPORT void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cause the current program to abort. +*/ +DLMALLOC_EXPORT void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +DLMALLOC_EXPORT void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ +DLMALLOC_EXPORT void* dlrealloc(void*, size_t); + +/* + realloc_in_place(void* p, size_t n) + Resizes the space allocated for p to size n, only if this can be + done without moving p (i.e., only if there is adjacent space + available if n is greater than p's current allocated size, or n is + less than or equal to p's size). This may be used instead of plain + realloc if an alternative allocation strategy is needed upon failure + to expand space; for example, reallocation of a buffer that must be + memory-aligned or cleared. You can use realloc_in_place to trigger + these alternatives only when needed. + + Returns p if successful; otherwise null. +*/ +DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +DLMALLOC_EXPORT void* dlmemalign(size_t, size_t); + +/* + int posix_memalign(void** pp, size_t alignment, size_t n); + Allocates a chunk of n bytes, aligned in accord with the alignment + argument. Differs from memalign only in that it (1) assigns the + allocated memory to *pp rather than returning it, (2) fails and + returns EINVAL if the alignment is not a power of two (3) fails and + returns ENOMEM if memory cannot be allocated. +*/ +DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +DLMALLOC_EXPORT void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. To workaround the fact that mallopt is specified to use int, + not size_t parameters, the value -1 is specially treated as the + maximum unsigned size_t value. + + SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt. See below for details. Briefly, supported + parameters are as follows (listed defaults are for "typical" + configurations). + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +DLMALLOC_EXPORT int dlmallopt(int, int); + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +DLMALLOC_EXPORT size_t dlmalloc_footprint(void); + +/* + malloc_max_footprint(); + Returns the maximum number of bytes obtained from the system. This + value will be greater than current footprint if deallocated space + has been reclaimed by the system. The peak number of bytes allocated + by malloc, realloc etc., is less than this value. Unlike mallinfo, + this function returns only a precomputed result, so can be called + frequently to monitor memory consumption. Even if locks are + otherwise defined, this function does not use them, so results might + not be up to date. +*/ +DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void); + +/* + malloc_footprint_limit(); + Returns the number of bytes that the heap is allowed to obtain from + the system, returning the last value returned by + malloc_set_footprint_limit, or the maximum size_t value if + never set. The returned value reflects a permission. There is no + guarantee that this number of bytes can actually be obtained from + the system. +*/ +DLMALLOC_EXPORT size_t dlmalloc_footprint_limit(); + +/* + malloc_set_footprint_limit(); + Sets the maximum number of bytes to obtain from the system, causing + failure returns from malloc and related functions upon attempts to + exceed this value. The argument value may be subject to page + rounding to an enforceable limit; this actual value is returned. + Using an argument of the maximum possible size_t effectively + disables checks. If the argument is less than or equal to the + current malloc_footprint, then all future allocations that require + additional system memory will fail. However, invocation cannot + retroactively deallocate existing used memory. +*/ +DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes); + +#if MALLOC_INSPECT_ALL +/* + malloc_inspect_all(void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg); + Traverses the heap and calls the given handler for each managed + region, skipping all bytes that are (or may be) used for bookkeeping + purposes. Traversal does not include include chunks that have been + directly memory mapped. Each reported region begins at the start + address, and continues up to but not including the end address. The + first used_bytes of the region contain allocated data. If + used_bytes is zero, the region is unallocated. The handler is + invoked with the given callback argument. If locks are defined, they + are held during the entire traversal. It is a bad idea to invoke + other malloc functions from within the handler. + + For example, to count the number of in-use chunks with size greater + than 1000, you could write: + static int count = 0; + void count_chunks(void* start, void* end, size_t used, void* arg) { + if (used >= 1000) ++count; + } + then: + malloc_inspect_all(count_chunks, NULL); + + malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. +*/ +DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), + void* arg); + +#endif /* MALLOC_INSPECT_ALL */ + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +DLMALLOC_EXPORT struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be freed when it is no longer needed. This can be + done all at once using bulk_free. + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be freed when it is no longer needed. This can be + done all at once using bulk_free. + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**); + +/* + bulk_free(void* array[], size_t n_elements) + Frees and clears (sets to null) each non-null pointer in the given + array. This is likely to be faster than freeing them one-by-one. + If footers are used, pointers that have been allocated in different + mspaces are not freed or cleared, and the count of all such pointers + is returned. For large arrays of pointers with poor locality, it + may be worthwhile to sort this array before calling bulk_free. +*/ +DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements); + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +DLMALLOC_EXPORT void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +DLMALLOC_EXPORT int dlmalloc_trim(size_t); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +DLMALLOC_EXPORT void dlmalloc_stats(void); + +#endif /* ONLY_MSPACES */ + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +DLMALLOC_EXPORT size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_track_large_chunks controls whether requests for large chunks + are allocated in their own untracked mmapped regions, separate from + others in this mspace. By default large chunks are not tracked, + which reduces fragmentation. However, such chunks are not + necessarily released to the system upon destroy_mspace. Enabling + tracking by setting to true may increase fragmentation, but avoids + leakage when relying on destroy_mspace to release all memory + allocated using this space. The function returns the previous + setting. +*/ +DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable); + + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +DLMALLOC_EXPORT size_t mspace_footprint(mspace msp); + +/* + mspace_max_footprint() returns the peak number of bytes obtained from the + system for this space. +*/ +DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + malloc_usable_size(void* p) behaves the same as malloc_usable_size; +*/ +DLMALLOC_EXPORT size_t mspace_usable_size(void* mem); + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad); + +/* + An alias for mallopt. +*/ +DLMALLOC_EXPORT int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +} /* end of extern "C" */ +#endif /* __cplusplus */ + + + +#endif + + diff --git a/src/kernel/mem/heap.basic.c b/src/kernel/mem/heap.basic.c deleted file mode 100644 index d746deb..0000000 --- a/src/kernel/mem/heap.basic.c +++ /dev/null @@ -1,136 +0,0 @@ -#include "heap.basic.h" - -#include "paging.h" - -#include <lib/mutex.h> -#include <core/sys.h> - -void heap_create(struct heap *heap, size_t start, size_t datasize, size_t maxdatasize) { - uint32_t i; - if (start & 0x0FFF) start = (start & 0xFFFFF000) + 0x1000; - - // Allocate frames - for (i = start; i < start + datasize; i += 0x1000) { - page_map(pagedir_getPage(kernel_pagedir, i, 1), frame_alloc(), 0, 0); - } - - heap->start_addr = start; - heap->end_addr = start + datasize; - heap->max_end = start + maxdatasize; - - struct heap_header *first = (struct heap_header*)start; - first->magic = HH_FREE_MAGIC; - first->prev = first->next = first; - - heap->first = first; - heap->first_free = first; - - heap->mutex = 0; -} - -// ***** UTILITY FUNCTIONS ***** - -#define BLK_SIZE(blk) (blk->next == blk ? ((size_t)heap->end_addr - (size_t)blk) : ((size_t)blk->next - (size_t)blk)) -#define BLK_FREE(blk) (blk->magic == HH_FREE_MAGIC) - -void blk_split(struct heap *heap, struct heap_header *hdr, size_t size) { - ASSERT (size >= MIN_BLK_SIZE); - ASSERT (BLK_SIZE(hdr) > size); - ASSERT (BLK_SIZE(hdr) - size >= MIN_BLK_SIZE); - ASSERT (BLK_FREE(hdr)); - - struct heap_header *hdr_nxt = (struct heap_header*)((size_t)hdr + size); - hdr_nxt->magic = HH_FREE_MAGIC; - hdr_nxt->prev = hdr; - if (hdr->next == hdr) { - hdr_nxt->next = hdr_nxt; - } else { - hdr_nxt->next = hdr->next; - hdr->next->prev = hdr_nxt; - } - hdr->next = hdr_nxt; -} - -void blk_combine_next(struct heap *heap, struct heap_header *hdr) { - ASSERT (hdr != hdr->next); // make sure we are not the last block - ASSERT (hdr->magic == HH_FREE_MAGIC); - ASSERT (hdr->next->magic == HH_FREE_MAGIC); - - struct heap_header *hdr_nxt = hdr->next; - if (hdr_nxt->next == hdr_nxt) { - hdr->next = hdr; - } else { - hdr->next = hdr_nxt->next; - hdr_nxt->next->prev = hdr; - } -} - -// ***** Allocation/Freeing functions ***** - -void *heap_alloc(struct heap *heap, size_t sz) { - /* Algorithm : - 1 Use heap->first_free to find first effectively free block, update heap->first_free - 2 Find first free AND BIG ENOUGH block - - If no block can be found, return 0 (no heap expand yet) - 3 If that block is too big, split it in two - 4 Mark that block as used and return it's address + sizeof(heap_header) */ - mutex_lock(&heap->mutex); - - sz += sizeof(struct heap_header); - if (sz < MIN_BLK_SIZE) sz = MIN_BLK_SIZE; - if (sz % 4 != 0) sz = sz + 4 - (sz % 4); - - // 1 - struct heap_header *it = heap->first_free; - while (!BLK_FREE(it) && it != it->next) it = it->next; - if (!BLK_FREE(it) && it == it->next) { - mutex_unlock(&heap->mutex); - return 0; - } - heap->first_free = it; - - // 2 - while (BLK_SIZE(it) < sz && it != it->next) it = it->next; - if (BLK_SIZE(it) < sz) { // no block could be found - mutex_unlock(&heap->mutex); - return 0; - } - - // 3 - if (BLK_SIZE(it) >= sz + MIN_BLK_SIZE) blk_split(heap, it, sz); - - // 4 - void *ret = (void*)((size_t)it + sizeof(struct heap_header)); - it->magic = HH_ALLOC_MAGIC; - - mutex_unlock(&heap->mutex); - return ret; -} - -void heap_free(struct heap *heap, void *ptr) { - /* Algorithm : - 1 Get block pointer to the block we are freeing - 2 Mark that block as free - 3 If block->next is free, combine_next(block) - 4 If block->prev is free, block = block->prev; combine_next(block) - 5 If block < heap->first_free; heap->first_free = block - */ - mutex_lock(&heap->mutex); - - // 1 - struct heap_header *hdr = (struct heap_header*)((size_t)ptr - sizeof(struct heap_header)); - if (hdr->magic != HH_ALLOC_MAGIC) return; - // 2 - hdr->magic = HH_FREE_MAGIC; - // 3 - if (hdr->next != hdr && hdr->next->magic == HH_FREE_MAGIC) blk_combine_next(heap, hdr); - // 4 - if (hdr->prev != hdr && hdr->prev->magic == HH_FREE_MAGIC) { - hdr = hdr->prev; - blk_combine_next(heap, hdr); - } - // 5 - if (hdr < heap->first_free) heap->first_free = hdr; - - mutex_unlock(&heap->mutex); -} diff --git a/src/kernel/mem/heap.basic.h b/src/kernel/mem/heap.basic.h deleted file mode 100644 index b52be4e..0000000 --- a/src/kernel/mem/heap.basic.h +++ /dev/null @@ -1,30 +0,0 @@ -#ifndef DEF_HEAP_H -#define DEF_HEAP_H - -/* This heap implementation is extra-simple and extra-slow. */ - -#include <types.h> - -#define HH_FREE_MAGIC 0xFEE0FEE0 -#define HH_ALLOC_MAGIC 0xA110A110 - -#define HEAP_EXTEND_QUANTITY 0x00080000 // each time we extend the heap, extend it 512 k - -#define MIN_BLK_SIZE 0x20 // 32 bytes - -struct heap_header { - uint32_t magic; - struct heap_header *prev, *next; -}; - -struct heap { - struct heap_header *first, *first_free; // first_free is not necessarily free, it's just an indication - size_t start_addr, end_addr, max_end; - uint32_t mutex; -}; - -void heap_create(struct heap *heap, size_t start, size_t datasize, size_t maxdatasize); -void *heap_alloc(struct heap *heap, size_t sz); -void heap_free(struct heap *heap, void *ptr); - -#endif diff --git a/src/kernel/mem/heap.c b/src/kernel/mem/heap.c deleted file mode 100644 index a590c28..0000000 --- a/src/kernel/mem/heap.c +++ /dev/null @@ -1,12 +0,0 @@ -// THIS EITHER INCLUDES heap.std.c OR heap.basic.c DEPENDING ON -// WHAT'S SPECIFIED IN config.h - -#include <config.h> - -#ifdef K_USE_BASIC_HEAP -#include "heap.basic.c" - -#else -#include "heap.std.c" - -#endif diff --git a/src/kernel/mem/heap.std.c b/src/kernel/mem/heap.std.c deleted file mode 100644 index 84c11e2..0000000 --- a/src/kernel/mem/heap.std.c +++ /dev/null @@ -1,243 +0,0 @@ -#include "heap.std.h" -#include "paging.h" -#include <core/sys.h> - -#include <mem/mem.h> - -#include <stdlib.h> - -#define HEAP_MAGIC 0xBAD0BEEF -#define HEAP_MIN_SIZE 0x4000 - -/* ******************* HEADER ****************** */ - -/* For internal use only. Inserts a hole in the heap's hole index at the correct position. */ -static void heapIdx_insert(struct heap *heap, struct heap_header *e) { - if ((heap->idxused + sizeof(struct heap_header*) + (size_t)heap->idx) >= heap->start_addr) return; - - uint32_t iterator = 0, pos; - while (iterator < heap->idxused && heap->idx[iterator]->size <= e->size) { - if (heap->idx[iterator] == e) return; - iterator++; - } - if (iterator == heap->idxused) { - heap->idx[heap->idxused++] = e; - } else { - pos = iterator; - iterator = heap->idxused; - while (iterator > pos) { - heap->idx[iterator] = heap->idx[iterator - 1]; - iterator--; - } - heap->idxused++; - heap->idx[pos] = e; - } -} - -/* For internal use only. Removes a hole from the heap's hole index. */ -static void heapIdx_remove(struct heap *heap, struct heap_header *e) { - uint32_t iterator; - for (iterator = 0; iterator < heap->idxused; iterator++) { - if (heap->idx[iterator] == e) break; - } - if (iterator == heap->idxused) return; - heap->idxused--; - while (iterator < heap->idxused) { - heap->idx[iterator] = heap->idx[iterator + 1]; - iterator++; - } -} - -/* ******************** CONTENTS ********************* */ - -/* Initializes the heap, creates the correct data structures. */ -void heap_create(struct heap *heap, size_t start, size_t idxsize, size_t datasize, size_t maxdatasize) { - uint32_t i; - - if (start & 0x0FFF) start = (start & 0xFFFFF000) + 0x1000; - - heap->start_addr = start + idxsize; - heap->end_addr = start + idxsize + datasize; - heap->max_end = start + idxsize + maxdatasize; - - for (i = start; i < heap->end_addr; i += 0x1000) { - page_map(pagedir_getPage(kernel_pagedir, i, 1), frame_alloc(), 0, 0); - } - - heap->idx = (struct heap_header**)start; - heap->idxused = 0; - - struct heap_header *hole = (struct heap_header*) heap->start_addr; - hole->size = (heap->end_addr - heap->start_addr); - hole->magic = HEAP_MAGIC; - hole->is_hole = 1; - - struct heap_footer *hole_footer = (struct heap_footer*)(heap->end_addr - sizeof(struct heap_footer)); - hole_footer->header = hole; - hole_footer->magic = HEAP_MAGIC; - - heapIdx_insert(heap, hole); -} - -/* For internal use only. Called by heap_alloc when necessary. Expands the heap to take more space. */ -static uint32_t heap_expand(struct heap *heap, size_t quantity) { - uint32_t i; - - if (quantity & 0x0FFF) { - quantity = (quantity & 0xFFFFF000) + 0x1000; - } - - if (heap->end_addr + quantity > heap->max_end) return 0; - - size_t newEnd = heap->end_addr + quantity; - - for (i = heap->end_addr; i < newEnd; i += 0x1000) { - page_map(pagedir_getPage(kernel_pagedir, i, 1), frame_alloc(), 0, 0); - } - - struct heap_footer *last_footer = (struct heap_footer*)(heap->end_addr - sizeof(struct heap_footer)); - struct heap_header *last_header = last_footer->header; - if (last_header->is_hole) { - heapIdx_remove(heap, last_header); - last_header->size += quantity; - - last_footer = (struct heap_footer*)(newEnd - sizeof(struct heap_footer)); - last_footer->magic = HEAP_MAGIC; - last_footer->header = last_header; - - heapIdx_insert(heap, last_header); - } else { - last_header = (struct heap_header*)heap->end_addr; - last_footer = (struct heap_footer*)(newEnd - sizeof(struct heap_footer)); - - last_header->is_hole = 1; - last_header->magic = HEAP_MAGIC; - last_header->size = quantity; - - last_footer->magic = HEAP_MAGIC; - last_footer->header = last_header; - - heapIdx_insert(heap, last_header); - } - - heap->end_addr = newEnd; - - return 1; -} - -/* For internal use only. Called by heap_free when necessary. Reduces the heap's size. */ -static void heap_contract(struct heap *heap) { - return; //TODO: this function bugs everything - - - struct heap_footer *last_footer = (struct heap_footer*)(heap->end_addr - sizeof(struct heap_footer)); - struct heap_header *last_header = last_footer->header; - - if (last_header->is_hole == 0) return; - if (last_header->size <= 0x1000) return; - - size_t quantity = ((heap->end_addr - heap->start_addr) & 0xFFFFF000) - 0x1000; - while ((heap->end_addr - heap->start_addr) - quantity < HEAP_MIN_SIZE || - last_header->size - 0x4000 < quantity) - quantity -= 0x1000; - if (quantity == 0) return; - - size_t newEnd = heap->end_addr - quantity; - - heapIdx_remove(heap, last_header); - last_header->size -= quantity; - last_footer = (struct heap_footer*)((size_t)last_footer - quantity); - last_footer->magic = HEAP_MAGIC; - last_footer->header = last_header; - heapIdx_insert(heap, last_header); - - for (heap->end_addr -= 0x1000; heap->end_addr >= newEnd; heap->end_addr -= 0x1000) { - page_unmapFree(pagedir_getPage(kernel_pagedir, heap->end_addr, 0)); - } -} - -/* Alocate some bytes on the heap. */ -void* heap_alloc(struct heap *heap, size_t sz) { - ASSERT(heap > K_HIGHHALF_ADDR); - size_t newsize = sz + sizeof(struct heap_header) + sizeof(struct heap_footer); - uint32_t iterator = 0; - - while (iterator < heap->idxused) { - if (heap->idx[iterator]->size >= newsize) break; - iterator++; - } - - if (iterator == heap->idxused) { //No hole is big enough - if (heap_expand(heap, - MAX((heap->end_addr - heap->start_addr) & 0xFFFFF000, (newsize & 0xFFFFF000) + 0x1000) - ) == 0) return 0; //FAILED - return heap_alloc(heap, sz); - } - - struct heap_header *loc = heap->idx[iterator]; - heapIdx_remove(heap, loc); - struct heap_footer *footer = (struct heap_footer*)((size_t)loc + loc->size - sizeof(struct heap_footer)); - loc->is_hole = 0; - - //If we have enough space to create a USEFUL new hole next to the allocated block, do it. - //If we do not, we might return a block that is a few bytes bigger than needed. - if (loc->size > (newsize + sizeof(struct heap_header) + sizeof(struct heap_footer))) { - loc->size = newsize; - - //Write footer for block we return - struct heap_footer *newfooter = (struct heap_footer*)((size_t)loc + newsize - sizeof(struct heap_footer)); - newfooter->header = loc; - newfooter->magic = HEAP_MAGIC; - - //Write header for new hole we create - struct heap_header *nextloc = (struct heap_header*)((size_t)loc + newsize); - nextloc->is_hole = 1; - nextloc->magic = HEAP_MAGIC; - nextloc->size = ((size_t)footer - (size_t)nextloc + sizeof(struct heap_footer)); - footer->header = nextloc; //Update footer - footer->magic = HEAP_MAGIC; - - heapIdx_insert(heap, nextloc); - } - - return (void*)((size_t)loc + sizeof(struct heap_header)); -} - -/* Frees a block previously allocated on the heap. */ -void heap_free(struct heap *heap, void* ptr) { - if (ptr == 0) return; - if ((size_t)ptr < heap->start_addr || (size_t)ptr > heap->end_addr) return; - - struct heap_header *header = (struct heap_header*)((size_t)ptr - sizeof(struct heap_header)); - struct heap_footer *footer = (struct heap_footer*)((size_t)header + header->size - sizeof(struct heap_footer)); - if (header->magic != HEAP_MAGIC || footer->magic != HEAP_MAGIC) return; - - //Unify left - struct heap_footer *prev_footer = (struct heap_footer*)((size_t)header - sizeof(struct heap_footer)); - if (prev_footer->magic == HEAP_MAGIC && prev_footer->header->is_hole) { - header = prev_footer->header; - heapIdx_remove(heap, header); - - footer->header = header; - header->size = ((size_t)footer - (size_t)header + sizeof(struct heap_footer)); - } - - //Unify right - struct heap_header *next_header = (struct heap_header*)((size_t)footer + sizeof(struct heap_footer)); - if (next_header->magic == HEAP_MAGIC && next_header->is_hole) { - heapIdx_remove(heap, next_header); - footer = (struct heap_footer*)((size_t)footer + next_header->size); - - footer->header = header; - header->size = ((size_t)footer - (size_t)header + sizeof(struct heap_footer)); - } - - header->is_hole = 1; - - heapIdx_insert(heap, header); - - if ((size_t)footer == (heap->end_addr - sizeof(struct heap_footer)) && - header->size >= 0x2000 && (heap->end_addr - heap->start_addr > HEAP_MIN_SIZE)) { - heap_contract(heap); - } -} diff --git a/src/kernel/mem/heap.std.h b/src/kernel/mem/heap.std.h deleted file mode 100644 index 2018508..0000000 --- a/src/kernel/mem/heap.std.h +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef DEF_HEAP_H -#define DEF_HEAP_H - -/* The heap is the data structure that permits allocating and freeing memory easily. - The functions in this file are only used by mem.c, which provides kmalloc and kfree. - The heap algorithm used is based on the one described here : - http://www.jamesmolloy.co.uk/tutorial_html/7.-The%20Heap.html */ - -#include <types.h> - -struct heap_header { - uint32_t magic; - uint32_t is_hole; - size_t size; -}; - -struct heap_footer { - uint32_t magic; - struct heap_header *header; -}; - -struct heap { - struct heap_header **idx; - uint32_t idxused; - size_t start_addr, end_addr, max_end; -}; - -void heap_create(struct heap *heap, size_t start, size_t idxsize, size_t datasize, size_t maxdatasize); -void* heap_alloc(struct heap *heap, size_t sz); -void heap_free(struct heap *heap, void* ptr); - -#endif diff --git a/src/kernel/mem/mem.c b/src/kernel/mem/mem.c index 8d814e4..3310b70 100644 --- a/src/kernel/mem/mem.c +++ b/src/kernel/mem/mem.c @@ -5,11 +5,7 @@ #include <config.h> -#ifdef K_USE_BASIC_HEAP -#include "heap.basic.h" -#else -#include "heap.std.h" -#endif +#include "_dlmalloc.h" #include "mem.h" @@ -20,7 +16,7 @@ #define KHEAP_MAXSIZE 0x08000000 size_t mem_placementAddr; -static uint32_t kheap_working = 0; +int _no_more_ksbrk = 0; // ****************************** @@ -38,12 +34,13 @@ static void get_free_pages() { if (locked) return; locked = 1; while (freepagecount < FREEPAGESTOKEEP) { - if (kheap_working) { + if (_no_more_ksbrk) { for (i = 0xFFFFF000; i >= 0xF0000000; i -= 0x1000) { if (pagedir_getPage(kernel_pagedir, i, 1)->frame == 0) break; } freepages[freepagecount].virt = i; - freepages[freepagecount].phys = frame_alloc() * 0x1000; + uint32_t frame = frame_alloc(); + freepages[freepagecount].phys = frame * 0x1000; page_map(pagedir_getPage(kernel_pagedir, i, 0), freepages[freepagecount].phys / 0x1000, 0, 0); freepagecount++; } else { @@ -51,7 +48,7 @@ static void get_free_pages() { mem_placementAddr &= 0xFFFFF000; mem_placementAddr += 0x1000; } - freepages[freepagecount].virt = (size_t)kmalloc(0x1000); + freepages[freepagecount].virt = (size_t)ksbrk(0x1000); freepages[freepagecount].phys = freepages[freepagecount].virt - K_HIGHHALF_ADDR; freepagecount++; } @@ -72,41 +69,69 @@ void* kmalloc_page(size_t *phys) { void kfree_page(void* ptr) { size_t addr = (size_t)ptr; - if (kheap_working) { //With this we can know if paging works + if (_no_more_ksbrk) { page_unmapFree(pagedir_getPage(kernel_pagedir, addr, 0)); } } //*********************************** -// NORMAL MEMORY ALLOCATION +// MEMORY ALLOCATION FOR DLMALLOC // ************************* -static struct heap kheap; - -/* Called on kernel start. Creates the kernel heap. */ -void kheap_init() { -#ifdef K_USE_BASIC_HEAP - heap_create(&kheap, (mem_placementAddr & 0xFFFFF000) + 0x1000, KHEAP_INITSIZE, KHEAP_MAXSIZE); -#else - heap_create(&kheap, (mem_placementAddr & 0xFFFFF000) + 0x1000, KHEAP_IDXSIZE, KHEAP_INITSIZE, KHEAP_MAXSIZE); -#endif - kheap_working = 1; - monitor_write("[KHeap] "); -} +void* ksbrk(size_t size) { + if (_no_more_ksbrk == 0) { // ksbrk is NOT being called by dlmalloc + if (size & 0x0FFF) { + size = (size & 0xFFFFF000) + 0x1000; + } + } -/* Allocates on the heap if possible. If not possible, allocates just after the kernel code. */ -void* kmalloc(size_t size) { - if (kheap_working) { - return heap_alloc(&kheap, size); - } else { - size_t tmp = mem_placementAddr; - mem_placementAddr += size; - return (void*)tmp; + size_t tmp = mem_placementAddr; + size_t er_begin, er_end, i; + + /* (DBG) monitor_write("<ksbrk "); + monitor_writeHex(size); + monitor_write(":"); + monitor_writeHex(tmp); + monitor_write("> "); */ + + mem_placementAddr += size; + + if (_no_more_ksbrk) { // paging enabled, we must allocate these pages + if (tmp < mem_placementAddr) { + er_begin = tmp; + if (er_begin & 0x0FFF) er_begin = (er_begin & 0xFFFFF000) + 0x1000; + er_end = mem_placementAddr; + if (er_end & 0x0FFF) er_end = (er_end & 0xFFFFF000) + 0x1000; + for (i = er_begin; i < er_end; i += 0x1000) { + struct page *p = pagedir_getPage(kernel_pagedir, i, 1); + size_t f = frame_alloc(); + page_map(p, f, 0, 0); + /* (DBG) monitor_write("<map "); monitor_writeHex(i); monitor_write(" "); + monitor_writeHex(f); monitor_write("> "); */ + } + } else if (tmp > mem_placementAddr) { + er_begin = (size_t)mem_placementAddr; + if (er_begin & 0x0FFF) er_begin = (er_begin & 0xFFFFF000) + 0x1000; + er_end = tmp; + if (er_end & 0x0FFF) er_end = (er_end & 0xFFFFF000) + 0x1000; + for (i = er_end - 0x1000; i >= er_begin; i -= 0x1000) { + // (DBG) monitor_write("<unmap:"); monitor_writeHex(i); monitor_write("> "); + page_unmapFree(pagedir_getPage(kernel_pagedir, i, 0)); + } + } } + + return (void*)tmp; } -void kfree(void* ptr) { - if (kheap_working) { - heap_free(&kheap, ptr); +void kbrk(void* ptr) { + monitor_write("<kbrk "); + monitor_writeHex(ptr); + monitor_write(">\n"); + + if ((size_t)ptr > (size_t)&end) { + ksbrk(ptr - (size_t)mem_placementAddr); + } else { + PANIC("INVALID KBRK."); } } diff --git a/src/kernel/mem/mem.h b/src/kernel/mem/mem.h index 093545e..b6e9622 100644 --- a/src/kernel/mem/mem.h +++ b/src/kernel/mem/mem.h @@ -8,11 +8,17 @@ void* kmalloc_page(size_t *phys); void kfree_page(void* page); -void* kmalloc(size_t size); -void kfree(void* ptr); + +// Internal, used by dlmalloc +void* ksbrk(size_t size); +void kbrk(void* ptr); + +#define kmalloc dlmalloc +#define kfree dlfree void kheap_init(); +extern int _no_more_ksbrk; extern size_t mem_placementAddr; extern void end; //Symbol defined by linker : end of kernel code diff --git a/src/kernel/mem/paging.c b/src/kernel/mem/paging.c index 3e2bffa..5953fc6 100644 --- a/src/kernel/mem/paging.c +++ b/src/kernel/mem/paging.c @@ -7,8 +7,6 @@ #include <core/sys.h> #include <task/task.h> -#define FIRST_KERNEL_PAGETABLE (K_HIGHHALF_ADDR >> 22) - static struct bitset frames; struct page_directory *kernel_pagedir, *current_pagedir; @@ -18,6 +16,9 @@ struct page_directory *kernel_pagedir, *current_pagedir; /* Allocates a page of physical memory. */ uint32_t frame_alloc() { uint32_t free = bitset_firstFree(&frames); + if (free == (uint32_t) -1) { + PANIC("Out of memory!"); + } bitset_set(&frames, free); return free; } @@ -37,9 +38,9 @@ void paging_init(size_t totalRam) { uint32_t i; frames.size = totalRam / 0x1000; - frames.bits = kmalloc(INDEX_FROM_BIT(frames.size)); + frames.bits = ksbrk(INDEX_FROM_BIT(frames.size)); - kernel_pagedir = kmalloc(sizeof(struct page_directory)); + kernel_pagedir = ksbrk(sizeof(struct page_directory)); kernel_pagedir->mappedSegs = 0; kernel_pagedir->tablesPhysical = kmalloc_page(&kernel_pagedir->physicalAddr); for (i = 0; i < 1024; i++) { @@ -160,10 +161,15 @@ struct page *pagedir_getPage(struct page_directory *pd, uint32_t address, int ma return &pd->tables[table_idx]->pages[address % 1024]; } else if (make) { pd->tables[table_idx] = kmalloc_page(pd->tablesPhysical + table_idx); - if (table_idx >= FIRST_KERNEL_PAGETABLE) - tasking_updateKernelPagetable(table_idx, pd->tables[table_idx], pd->tablesPhysical[table_idx]); + memset((uint8_t*)pd->tables[table_idx], 0, 0x1000); pd->tablesPhysical[table_idx] |= 0x07; + + if (table_idx >= FIRST_KERNEL_PAGETABLE) { + monitor_write("UKPI "); + tasking_updateKernelPagetable(table_idx, pd->tables[table_idx], pd->tablesPhysical[table_idx]); + } + return &pd->tables[table_idx]->pages[address % 1024]; } else { return 0; diff --git a/src/kernel/mem/paging.h b/src/kernel/mem/paging.h index ec10560..2d5713f 100644 --- a/src/kernel/mem/paging.h +++ b/src/kernel/mem/paging.h @@ -4,6 +4,9 @@ #include <types.h> #include <task/idt.h> +#include <mem/mem.h> +#define FIRST_KERNEL_PAGETABLE (K_HIGHHALF_ADDR >> 22) + struct page { uint32_t present : 1; //Page mapped to a frame ? uint32_t rw : 1; //Page read/write ? diff --git a/src/kernel/task/idt.c b/src/kernel/task/idt.c index be5d152..ff129be 100644 --- a/src/kernel/task/idt.c +++ b/src/kernel/task/idt.c @@ -2,6 +2,7 @@ #include <core/monitor.h> #include <core/sys.h> #include <mem/paging.h> +#include <mem/mem.h> #include "task.h" #include "syscall.h" diff --git a/src/kernel/task/task.c b/src/kernel/task/task.c index a6becdb..7071248 100644 --- a/src/kernel/task/task.c +++ b/src/kernel/task/task.c @@ -45,7 +45,7 @@ void tasking_init() { /* Called by the paging functions when a page table is allocated in the kernel space (>K_HIGHHALF_ADDR). Updates the page directories of all the processes. */ void tasking_updateKernelPagetable(uint32_t idx, struct page_table *table, uint32_t tablephysical) { - if (idx < 896) return; + if (idx < FIRST_KERNEL_PAGETABLE) return; struct process* it = processes; while (it != 0) { it->pagedir->tables[idx] = table; diff --git a/src/kernel/task/timer.c b/src/kernel/task/timer.c index 65ad06a..35a94f9 100644 --- a/src/kernel/task/timer.c +++ b/src/kernel/task/timer.c @@ -1,6 +1,7 @@ #include "timer.h" #include "task.h" #include "idt.h" +#include <mem/mem.h> #include <core/sys.h> #include <core/monitor.h> diff --git a/src/user/test/main.c b/src/user/test/main.c index 14f6363..d890850 100644 --- a/src/user/test/main.c +++ b/src/user/test/main.c @@ -2,9 +2,13 @@ #include <tce/mem.h> #include <stdlib.h> +static volatile int threads = 0; + void thread_cascade(void* d) { int n = (int)d; + threads++; + if (d == 0) { //printk("{#} 0 cascade element started => end\n"); printk("{#}0end\t"); @@ -26,15 +30,21 @@ void thread_cascade(void* d) { //printk("{#} Thread cascade element finished.\n"); printk("{#}end\t"); } + + threads--; } int main() { printk("Hi world from test module !\n"); printk("{1} Creating thread cascade len:4\n"); - thread_new(thread_cascade, (void*)4); + thread_new(thread_cascade, (void*)7); printk("{1} Thread now sleeping...\n"); - while (1) thread_sleep(1000); + while (1) { + thread_sleep(1000); + if (threads == 0) break; + } + printk("{1} Everybody seems to be done here, exiting...\n"); return 0; } |