summaryrefslogtreecommitdiff
path: root/sos-code-article5/sos/kmem_slab.c
blob: 557508c78b244c73b2771d7fc940f696c132db73 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/* Copyright (C) 2000 Thomas Petazzoni
   Copyright (C) 2004 David Decotigny

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License
   as published by the Free Software Foundation; either version 2
   of the License, or (at your option) any later version.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
   USA. 
*/
#include <sos/macros.h>
#include <sos/klibc.h>
#include <sos/list.h>
#include <sos/assert.h>
#include <hwcore/paging.h>
#include <sos/physmem.h>
#include <sos/kmem_vmm.h>

#include "kmem_slab.h"

/* Dimensioning constants */
#define NB_PAGES_IN_SLAB_OF_CACHES 1
#define NB_PAGES_IN_SLAB_OF_RANGES 1

/** The structure of a slab cache */
struct sos_kslab_cache
{
  char *name;

  /* non mutable characteristics of this slab */
  sos_size_t  original_obj_size; /* asked object size */
  sos_size_t  alloc_obj_size;    /* actual object size, taking the
				    alignment constraints into account */
  sos_count_t nb_objects_per_slab;
  sos_count_t nb_pages_per_slab;
  sos_count_t min_free_objects;

/* slab cache flags */
// #define SOS_KSLAB_CREATE_MAP  (1<<0) /* See kmem_slab.h */
// #define SOS_KSLAB_CREATE_ZERO (1<<1) /* " " " " " " " " */
#define ON_SLAB (1<<31) /* struct sos_kslab is included inside the slab */
  sos_ui32_t  flags;

  /* Supervision data (updated at run-time) */
  sos_count_t nb_free_objects;

  /* The lists of slabs owned by this cache */
  struct sos_kslab *slab_list; /* head = non full, tail = full */

  /* The caches are linked together on the kslab_cache_list */
  struct sos_kslab_cache *prev, *next;
};


/** The structure of a slab */
struct sos_kslab
{
  /** Number of free objects on this slab */
  sos_count_t nb_free;

  /** The list of these free objects */
  struct sos_kslab_free_object *free;

  /** The address of the associated range structure */
  struct sos_kmem_range *range;

  /** Virtual start address of this range */
  sos_vaddr_t first_object;
  
  /** Slab cache owning this slab */
  struct sos_kslab_cache *cache;

  /** Links to the other slabs managed by the same cache */
  struct sos_kslab *prev, *next;
};


/** The structure of the free objects in the slab */
struct sos_kslab_free_object
{
  struct sos_kslab_free_object *prev, *next;
};

/** The cache of slab caches */
static struct sos_kslab_cache *cache_of_struct_kslab_cache;

/** The cache of slab structures for non-ON_SLAB caches */
static struct sos_kslab_cache *cache_of_struct_kslab;

/** The list of slab caches */
static struct sos_kslab_cache *kslab_cache_list;

/* Helper function to initialize a cache structure */
static sos_ret_t
cache_initialize(/*out*/struct sos_kslab_cache *the_cache,
		 const char* name,
		 sos_size_t  obj_size,
		 sos_count_t pages_per_slab,
		 sos_count_t min_free_objs,
		 sos_ui32_t  cache_flags)
{
  unsigned int space_left;
  sos_size_t alloc_obj_size;

  if (obj_size <= 0)
    return -SOS_EINVAL;

  /* Default allocation size is the requested one */
  alloc_obj_size = obj_size;

  /* Make sure the requested size is large enough to store a
     free_object structure */
  if (alloc_obj_size < sizeof(struct sos_kslab_free_object))
    alloc_obj_size = sizeof(struct sos_kslab_free_object);
  
  /* Align obj_size on 4 bytes */
  alloc_obj_size = SOS_ALIGN_SUP(alloc_obj_size, sizeof(int));

  /* Make sure supplied number of pages per slab is consistent with
     actual allocated object size */
  if (alloc_obj_size > pages_per_slab*SOS_PAGE_SIZE)
    return -SOS_EINVAL;
  
  /* Refuse too large slabs */
  if (pages_per_slab > MAX_PAGES_PER_SLAB)
    return -SOS_ENOMEM;

  /* Fills in the cache structure */
  memset(the_cache, 0x0, sizeof(struct sos_kslab_cache));
  the_cache->name              = (char*)name;
  the_cache->flags             = cache_flags;
  the_cache->original_obj_size = obj_size;
  the_cache->alloc_obj_size    = alloc_obj_size;
  the_cache->min_free_objects  = min_free_objs;
  the_cache->nb_pages_per_slab = pages_per_slab;
  
  /* Small size objets => the slab structure is allocated directly in
     the slab */
  if(alloc_obj_size <= sizeof(struct sos_kslab))
    the_cache->flags |= ON_SLAB;
  
  /*
   * Compute the space left once the maximum number of objects
   * have been allocated in the slab
   */
  space_left = the_cache->nb_pages_per_slab*SOS_PAGE_SIZE;
  if(the_cache->flags & ON_SLAB)
    space_left -= sizeof(struct sos_kslab);
  the_cache->nb_objects_per_slab = space_left / alloc_obj_size;
  space_left -= the_cache->nb_objects_per_slab*alloc_obj_size;

  /* Make sure a single slab is large enough to contain the minimum
     number of objects requested */
  if (the_cache->nb_objects_per_slab < min_free_objs)
    return -SOS_EINVAL;

  /* If there is now enough place for both the objects and the slab
     structure, then make the slab structure ON_SLAB */
  if (space_left >= sizeof(struct sos_kslab))
    the_cache->flags |= ON_SLAB;

  return SOS_OK;
}


/** Helper function to add a new slab for the given cache. */
static sos_ret_t
cache_add_slab(struct sos_kslab_cache *kslab_cache,
	       sos_vaddr_t vaddr_slab,
	       struct sos_kslab *slab)
{
  int i;

  /* Setup the slab structure */
  memset(slab, 0x0, sizeof(struct sos_kslab));
  slab->cache = kslab_cache;

  /* Establish the address of the first free object */
  slab->first_object = vaddr_slab;

  /* Account for this new slab in the cache */
  slab->nb_free = kslab_cache->nb_objects_per_slab;
  kslab_cache->nb_free_objects += slab->nb_free;

  /* Build the list of free objects */
  for (i = 0 ; i <  kslab_cache->nb_objects_per_slab ; i++)
    {
      sos_vaddr_t obj_vaddr;

      /* Set object's address */
      obj_vaddr = slab->first_object + i*kslab_cache->alloc_obj_size;

      /* Add it to the list of free objects */
      list_add_tail(slab->free,
		    (struct sos_kslab_free_object *)obj_vaddr);
    }

  /* Add the slab to the cache's slab list: add the head of the list
     since this slab is non full */
  list_add_head(kslab_cache->slab_list, slab);

  return SOS_OK;
}


/** Helper function to allocate a new slab for the given kslab_cache */
static sos_ret_t
cache_grow(struct sos_kslab_cache *kslab_cache,
	   sos_ui32_t alloc_flags)
{
  sos_ui32_t range_alloc_flags;

  struct sos_kmem_range *new_range;
  sos_vaddr_t new_range_start;

  struct sos_kslab *new_slab;

  /*
   * Setup the flags for the range allocation
   */
  range_alloc_flags = 0;

  /* Atomic ? */
  if (alloc_flags & SOS_KSLAB_ALLOC_ATOMIC)
    range_alloc_flags |= SOS_KMEM_VMM_ATOMIC;

  /* Need physical mapping NOW ? */
  if (kslab_cache->flags & (SOS_KSLAB_CREATE_MAP
			   | SOS_KSLAB_CREATE_ZERO))
    range_alloc_flags |= SOS_KMEM_VMM_MAP;

  /* Allocate the range */
  new_range = sos_kmem_vmm_new_range(kslab_cache->nb_pages_per_slab,
				     range_alloc_flags,
				     & new_range_start);
  if (! new_range)
    return -SOS_ENOMEM;

  /* Allocate the slab structure */
  if (kslab_cache->flags & ON_SLAB)
    {
      /* Slab structure is ON the slab: simply set its address to the
	 end of the range */
      sos_vaddr_t slab_vaddr
	= new_range_start + kslab_cache->nb_pages_per_slab*SOS_PAGE_SIZE
	  - sizeof(struct sos_kslab);
      new_slab = (struct sos_kslab*)slab_vaddr;
    }
  else
    {
      /* Slab structure is OFF the slab: allocate it from the cache of
	 slab structures */
      sos_vaddr_t slab_vaddr
	= sos_kmem_cache_alloc(cache_of_struct_kslab,
			       alloc_flags);
      if (! slab_vaddr)
	{
	  sos_kmem_vmm_del_range(new_range);
	  return -SOS_ENOMEM;
	}
      new_slab = (struct sos_kslab*)slab_vaddr;
    }

  cache_add_slab(kslab_cache, new_range_start, new_slab);
  new_slab->range = new_range;

  /* Set the backlink from range to this slab */
  sos_kmem_vmm_set_slab(new_range, new_slab);

  return SOS_OK;
}


/**
 * Helper function to release a slab
 *
 * The corresponding range is always deleted, except when the @param
 * must_del_range_now is not set. This happens only when the function
 * gets called from sos_kmem_cache_release_struct_range(), to avoid
 * large recursions.
 */
static sos_ret_t
cache_release_slab(struct sos_kslab *slab,
		   sos_bool_t must_del_range_now)
{
  struct sos_kslab_cache *kslab_cache = slab->cache;
  struct sos_kmem_range *range = slab->range;

  SOS_ASSERT_FATAL(kslab_cache != NULL);
  SOS_ASSERT_FATAL(range != NULL);
  SOS_ASSERT_FATAL(slab->nb_free == slab->cache->nb_objects_per_slab);

  /* First, remove the slab from the slabs' list of the cache */
  list_delete(kslab_cache->slab_list, slab);
  slab->cache->nb_free_objects -= slab->nb_free;

  /* Release the slab structure if it is OFF slab */
  if (! (slab->cache->flags & ON_SLAB))
    sos_kmem_cache_free((sos_vaddr_t)slab);

  /* Ok, the range is not bound to any slab anymore */
  sos_kmem_vmm_set_slab(range, NULL);

  /* Always delete the range now, unless we are told not to do so (see
     sos_kmem_cache_release_struct_range() below) */
  if (must_del_range_now)
    return sos_kmem_vmm_del_range(range);

  return SOS_OK;
}


/**
 * Helper function to create the initial cache of caches, with a very
 * first slab in it, so that new cache structures can be simply allocated.
 * @return the cache structure for the cache of caches
 */
static struct sos_kslab_cache *
create_cache_of_caches(sos_vaddr_t vaddr_first_slab_of_caches,
		       int nb_pages)
{
  /* The preliminary cache structure we need in order to allocate the
     first slab in the cache of caches (allocated on the stack !) */
  struct sos_kslab_cache fake_cache_of_caches;

  /* The real cache structure for the cache of caches */
  struct sos_kslab_cache *real_cache_of_caches;

  /* The kslab structure for this very first slab */
  struct sos_kslab       *slab_of_caches;

  /* Init the cache structure for the cache of caches */
  if (cache_initialize(& fake_cache_of_caches,
		       "Caches", sizeof(struct sos_kslab_cache),
		       nb_pages, 0, SOS_KSLAB_CREATE_MAP | ON_SLAB))
    /* Something wrong with the parameters */
    return NULL;

  memset((void*)vaddr_first_slab_of_caches, 0x0, nb_pages*SOS_PAGE_SIZE);

  /* Add the pages for the 1st slab of caches */
  slab_of_caches = (struct sos_kslab*)(vaddr_first_slab_of_caches
				       + nb_pages*SOS_PAGE_SIZE
				       - sizeof(struct sos_kslab));

  /* Add the abovementioned 1st slab to the cache of caches */
  cache_add_slab(& fake_cache_of_caches,
		 vaddr_first_slab_of_caches,
		 slab_of_caches);

  /* Now we allocate a cache structure, which will be the real cache
     of caches, ie a cache structure allocated INSIDE the cache of
     caches, not inside the stack */
  real_cache_of_caches
    = (struct sos_kslab_cache*) sos_kmem_cache_alloc(& fake_cache_of_caches,
						     0);
  /* We initialize it */
  memcpy(real_cache_of_caches, & fake_cache_of_caches,
	 sizeof(struct sos_kslab_cache));
  /* We need to update the slab's 'cache' field */
  slab_of_caches->cache = real_cache_of_caches;
  
  /* Add the cache to the list of slab caches */
  list_add_tail(kslab_cache_list, real_cache_of_caches);

  return real_cache_of_caches;
}


/**
 * Helper function to create the initial cache of ranges, with a very
 * first slab in it, so that new kmem_range structures can be simply
 * allocated.
 * @return the cache of kmem_range
 */
static struct sos_kslab_cache *
create_cache_of_ranges(sos_vaddr_t vaddr_first_slab_of_ranges,
		       sos_size_t  sizeof_struct_range,
		       int nb_pages)
{
  /* The cache structure for the cache of kmem_range */
  struct sos_kslab_cache *cache_of_ranges;

  /* The kslab structure for the very first slab of ranges */
  struct sos_kslab *slab_of_ranges;

  cache_of_ranges = (struct sos_kslab_cache*)
    sos_kmem_cache_alloc(cache_of_struct_kslab_cache,
			 0);
  if (! cache_of_ranges)
    return NULL;

  /* Init the cache structure for the cache of ranges with min objects
     per slab = 2 !!! */
  if (cache_initialize(cache_of_ranges,
		       "struct kmem_range",
		       sizeof_struct_range,
		       nb_pages, 2, SOS_KSLAB_CREATE_MAP | ON_SLAB))
    /* Something wrong with the parameters */
    return NULL;

  /* Add the cache to the list of slab caches */
  list_add_tail(kslab_cache_list, cache_of_ranges);

  /*
   * Add the first slab for this cache
   */
  memset((void*)vaddr_first_slab_of_ranges, 0x0, nb_pages*SOS_PAGE_SIZE);

  /* Add the pages for the 1st slab of ranges */
  slab_of_ranges = (struct sos_kslab*)(vaddr_first_slab_of_ranges
				       + nb_pages*SOS_PAGE_SIZE
				       - sizeof(struct sos_kslab));

  cache_add_slab(cache_of_ranges,
		 vaddr_first_slab_of_ranges,
		 slab_of_ranges);

  return cache_of_ranges;
}


struct sos_kslab_cache *
sos_kmem_cache_setup_prepare(sos_vaddr_t kernel_core_base,
			     sos_vaddr_t kernel_core_top,
			     sos_size_t  sizeof_struct_range,
			     /* results */
			     struct sos_kslab **first_struct_slab_of_caches,
			     sos_vaddr_t *first_slab_of_caches_base,
			     sos_count_t *first_slab_of_caches_nb_pages,
			     struct sos_kslab **first_struct_slab_of_ranges,
			     sos_vaddr_t *first_slab_of_ranges_base,
			     sos_count_t *first_slab_of_ranges_nb_pages)
{
  int i;
  sos_ret_t   retval;
  sos_vaddr_t vaddr;

  /* The cache of ranges we are about to allocate */
  struct sos_kslab_cache *cache_of_ranges;

  /* In the begining, there isn't any cache */
  kslab_cache_list = NULL;
  cache_of_struct_kslab = NULL;
  cache_of_struct_kslab_cache = NULL;

  /*
   * Create the cache of caches, initialised with 1 allocated slab
   */

  /* Allocate the pages needed for the 1st slab of caches, and map them
     in kernel space, right after the kernel */
  *first_slab_of_caches_base = SOS_PAGE_ALIGN_SUP(kernel_core_top);
  for (i = 0, vaddr = *first_slab_of_caches_base ;
       i < NB_PAGES_IN_SLAB_OF_CACHES ;
       i++, vaddr += SOS_PAGE_SIZE)
    {
      sos_paddr_t ppage_paddr;

      ppage_paddr
	= sos_physmem_ref_physpage_new(FALSE);
      SOS_ASSERT_FATAL(ppage_paddr != (sos_paddr_t)NULL);

      retval = sos_paging_map(ppage_paddr, vaddr,
			      FALSE,
			      SOS_VM_MAP_ATOMIC
			      | SOS_VM_MAP_PROT_READ
			      | SOS_VM_MAP_PROT_WRITE);
      SOS_ASSERT_FATAL(retval == SOS_OK);

      retval = sos_physmem_unref_physpage(ppage_paddr);
      SOS_ASSERT_FATAL(retval == FALSE);
    }

  /* Create the cache of caches */
  *first_slab_of_caches_nb_pages = NB_PAGES_IN_SLAB_OF_CACHES;
  cache_of_struct_kslab_cache
    = create_cache_of_caches(*first_slab_of_caches_base,
			     NB_PAGES_IN_SLAB_OF_CACHES);
  SOS_ASSERT_FATAL(cache_of_struct_kslab_cache != NULL);

  /* Retrieve the slab that should have been allocated */
  *first_struct_slab_of_caches
    = list_get_head(cache_of_struct_kslab_cache->slab_list);

  
  /*
   * Create the cache of ranges, initialised with 1 allocated slab
   */
  *first_slab_of_ranges_base = vaddr;
  /* Allocate the 1st slab */
  for (i = 0, vaddr = *first_slab_of_ranges_base ;
       i < NB_PAGES_IN_SLAB_OF_RANGES ;
       i++, vaddr += SOS_PAGE_SIZE)
    {
      sos_paddr_t ppage_paddr;

      ppage_paddr
	= sos_physmem_ref_physpage_new(FALSE);
      SOS_ASSERT_FATAL(ppage_paddr != (sos_paddr_t)NULL);

      retval = sos_paging_map(ppage_paddr, vaddr,
			      FALSE,
			      SOS_VM_MAP_ATOMIC
			      | SOS_VM_MAP_PROT_READ
			      | SOS_VM_MAP_PROT_WRITE);
      SOS_ASSERT_FATAL(retval == SOS_OK);

      retval = sos_physmem_unref_physpage(ppage_paddr);
      SOS_ASSERT_FATAL(retval == FALSE);
    }

  /* Create the cache of ranges */
  *first_slab_of_ranges_nb_pages = NB_PAGES_IN_SLAB_OF_RANGES;
  cache_of_ranges = create_cache_of_ranges(*first_slab_of_ranges_base,
					   sizeof_struct_range,
					   NB_PAGES_IN_SLAB_OF_RANGES);
  SOS_ASSERT_FATAL(cache_of_ranges != NULL);

  /* Retrieve the slab that should have been allocated */
  *first_struct_slab_of_ranges
    = list_get_head(cache_of_ranges->slab_list);

  /*
   * Create the cache of slabs, without any allocated slab yet
   */
  cache_of_struct_kslab
    = sos_kmem_cache_create("off-slab slab structures",
			    sizeof(struct sos_kslab),
			    1,
			    0,
			    SOS_KSLAB_CREATE_MAP);
  SOS_ASSERT_FATAL(cache_of_struct_kslab != NULL);

  return cache_of_ranges;
}


sos_ret_t
sos_kmem_cache_setup_commit(struct sos_kslab *first_struct_slab_of_caches,
			    struct sos_kmem_range *first_range_of_caches,
			    struct sos_kslab *first_struct_slab_of_ranges,
			    struct sos_kmem_range *first_range_of_ranges)
{
  first_struct_slab_of_caches->range = first_range_of_caches;
  first_struct_slab_of_ranges->range = first_range_of_ranges;
  return SOS_OK;
}


struct sos_kslab_cache *
sos_kmem_cache_create(const char* name,
		      sos_size_t  obj_size,
		      sos_count_t pages_per_slab,
		      sos_count_t min_free_objs,
		      sos_ui32_t  cache_flags)
{
  struct sos_kslab_cache *new_cache;

  /* Allocate the new cache */
  new_cache = (struct sos_kslab_cache*)
    sos_kmem_cache_alloc(cache_of_struct_kslab_cache,
			 0/* NOT ATOMIC */);
  if (! new_cache)
    return NULL;

  if (cache_initialize(new_cache, name, obj_size,
		       pages_per_slab, min_free_objs,
		       cache_flags))
    {
      /* Something was wrong */
      sos_kmem_cache_free((sos_vaddr_t)new_cache);
      return NULL;
    }

  /* Add the cache to the list of slab caches */
  list_add_tail(kslab_cache_list, new_cache);
  
  /* if the min_free_objs is set, pre-allocate a slab */
  if (min_free_objs)
    {
      if (cache_grow(new_cache, 0 /* Not atomic */) != SOS_OK)
	{
	  sos_kmem_cache_destroy(new_cache);
	  return NULL; /* Not enough memory */
	}
    }

  return new_cache;  
}

  
sos_ret_t sos_kmem_cache_destroy(struct sos_kslab_cache *kslab_cache)
{
  int nb_slabs;
  struct sos_kslab *slab;

  if (! kslab_cache)
    return -SOS_EINVAL;

  /* Refuse to destroy the cache if there are any objects still
     allocated */
  list_foreach(kslab_cache->slab_list, slab, nb_slabs)
    {
      if (slab->nb_free != kslab_cache->nb_objects_per_slab)
	return -SOS_EBUSY;
    }

  /* Remove all the slabs */
  while ((slab = list_get_head(kslab_cache->slab_list)) != NULL)
    {
      cache_release_slab(slab, TRUE);
    }

  /* Remove the cache */
  return sos_kmem_cache_free((sos_vaddr_t)kslab_cache);
}


sos_vaddr_t sos_kmem_cache_alloc(struct sos_kslab_cache *kslab_cache,
				 sos_ui32_t alloc_flags)
{
  sos_vaddr_t obj_vaddr;
  struct sos_kslab * slab_head;
#define ALLOC_RET return

  /* If the slab at the head of the slabs' list has no free object,
     then the other slabs don't either => need to allocate a new
     slab */
  if ((! kslab_cache->slab_list)
      || (! list_get_head(kslab_cache->slab_list)->free))
    {
      if (cache_grow(kslab_cache, alloc_flags) != SOS_OK)
	/* Not enough memory or blocking alloc */
	ALLOC_RET( (sos_vaddr_t)NULL);
    }

  /* Here: we are sure that list_get_head(kslab_cache->slab_list)
     exists *AND* that list_get_head(kslab_cache->slab_list)->free is
     NOT NULL */
  slab_head = list_get_head(kslab_cache->slab_list);
  SOS_ASSERT_FATAL(slab_head != NULL);

  /* Allocate the object at the head of the slab at the head of the
     slabs' list */
  obj_vaddr = (sos_vaddr_t)list_pop_head(slab_head->free);
  slab_head->nb_free --;
  kslab_cache->nb_free_objects --;

  /* If needed, reset object's contents */
  if (kslab_cache->flags & SOS_KSLAB_CREATE_ZERO)
    memset((void*)obj_vaddr, 0x0, kslab_cache->alloc_obj_size);

  /* Slab is now full ? */
  if (slab_head->free == NULL)
    {
      /* Transfer it at the tail of the slabs' list */
      struct sos_kslab *slab;
      slab = list_pop_head(kslab_cache->slab_list);
      list_add_tail(kslab_cache->slab_list, slab);
    }
  
  /*
   * For caches that require a minimum amount of free objects left,
   * allocate a slab if needed.
   *
   * Notice the "== min_objects - 1": we did not write " <
   * min_objects" because for the cache of kmem structure, this would
   * lead to an chicken-and-egg problem, since cache_grow below would
   * call cache_alloc again for the kmem_vmm cache, so we return here
   * with the same cache. If the test were " < min_objects", then we
   * would call cache_grow again for the kmem_vmm cache again and
   * again... until we reach the bottom of our stack (infinite
   * recursion). By telling precisely "==", then the cache_grow would
   * only be called the first time.
   */
  if ((kslab_cache->min_free_objects > 0)
      && (kslab_cache->nb_free_objects == (kslab_cache->min_free_objects - 1)))
    {
      /* No: allocate a new slab now */
      if (cache_grow(kslab_cache, alloc_flags) != SOS_OK)
	{
	  /* Not enough free memory or blocking alloc => undo the
	     allocation */
	  sos_kmem_cache_free(obj_vaddr);
	  ALLOC_RET( (sos_vaddr_t)NULL);
	}
    }

  ALLOC_RET(obj_vaddr);
}


/**
 * Helper function to free the object located at the given address.
 *
 * @param empty_slab is the address of the slab to release, if removing
 * the object causes the slab to become empty.
 */
inline static
sos_ret_t
free_object(sos_vaddr_t vaddr,
	    struct sos_kslab ** empty_slab)
{
  struct sos_kslab_cache *kslab_cache;

  /* Lookup the slab containing the object in the slabs' list */
  struct sos_kslab *slab = sos_kmem_vmm_resolve_slab(vaddr);

  /* By default, consider that the slab will not become empty */
  *empty_slab = NULL;

  /* Did not find the slab */
  if (! slab)
    return -SOS_EINVAL;

  SOS_ASSERT_FATAL(slab->cache);
  kslab_cache = slab->cache;

  /*
   * Check whether the address really could mark the start of an actual
   * allocated object
   */
  /* Address multiple of an object's size ? */
  if (( (vaddr - slab->first_object)
	% kslab_cache->alloc_obj_size) != 0)
    return -SOS_EINVAL;
  /* Address not too large ? */
  if (( (vaddr - slab->first_object)
	/ kslab_cache->alloc_obj_size) >= kslab_cache->nb_objects_per_slab)
    return -SOS_EINVAL;

  /*
   * Ok: we now release the object
   */

  /* Did find a full slab => will not be full any more => move it
     to the head of the slabs' list */
  if (! slab->free)
    {
      list_delete(kslab_cache->slab_list, slab);
      list_add_head(kslab_cache->slab_list, slab);
    }

  /* Release the object */
  list_add_head(slab->free, (struct sos_kslab_free_object*)vaddr);
  slab->nb_free++;
  kslab_cache->nb_free_objects++;
  SOS_ASSERT_FATAL(slab->nb_free <= slab->cache->nb_objects_per_slab);

  /* Cause the slab to be released if it becomes empty, and if we are
     allowed to do it */
  if ((slab->nb_free >= kslab_cache->nb_objects_per_slab)
      && (kslab_cache->nb_free_objects - slab->nb_free
	  >= kslab_cache->min_free_objects))
    {
      *empty_slab = slab;
    }

  return SOS_OK;
}


sos_ret_t sos_kmem_cache_free(sos_vaddr_t vaddr)
{
  sos_ret_t retval;
  struct sos_kslab *empty_slab;

  /* Remove the object from the slab */
  retval = free_object(vaddr, & empty_slab);
  if (retval != SOS_OK)
    return retval;

  /* Remove the slab and the underlying range if needed */
  if (empty_slab != NULL)
    return cache_release_slab(empty_slab, TRUE);

  return SOS_OK;
}


struct sos_kmem_range *
sos_kmem_cache_release_struct_range(struct sos_kmem_range *the_range)
{
  sos_ret_t retval;
  struct sos_kslab *empty_slab;

  /* Remove the object from the slab */
  retval = free_object((sos_vaddr_t)the_range, & empty_slab);
  if (retval != SOS_OK)
    return NULL;

  /* Remove the slab BUT NOT the underlying range if needed */
  if (empty_slab != NULL)
    {
      struct sos_kmem_range *empty_range = empty_slab->range;
      SOS_ASSERT_FATAL(cache_release_slab(empty_slab, FALSE) == SOS_OK);
      SOS_ASSERT_FATAL(empty_range != NULL);
      return empty_range;
    }

  return NULL;
}