summaryrefslogblamecommitdiff
path: root/sos-code-article6/sos/main.c
blob: 546dbe77239eb8c30bf7a6ccd65474fcbaebd1d0 (plain) (tree)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
















































































                                                                         
                                 






































































































































































































































































































































































































































































































































                                                                                                               



                                                        

                                                                              
                                                
                                                                         





                                                          

                                           
                                             







                                                                           
                                                       







                                                                           
                                               











                                                                             
                                                











                                                                           
                                        






                                                                  
                  









                                                                    
                                         







                                                                    
               









                                                                      
                







                                                              
                                 




                                         
                                                         












                                                                      
                                 




                                            
                                                         












                                                                        
                                   



















                                                               
                                   









                                                     

                    
 

                                                          



























































                                                                      
                                           





























































































































































































































































































































                                                                                                                                               
/* Copyright (C) 2004  The SOS Team

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License
   as published by the Free Software Foundation; either version 2
   of the License, or (at your option) any later version.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
   USA. 
*/

/* Include definitions of the multiboot standard */
#include <bootstrap/multiboot.h>
#include <hwcore/idt.h>
#include <hwcore/gdt.h>
#include <hwcore/irq.h>
#include <hwcore/exception.h>
#include <hwcore/i8254.h>
#include <sos/list.h>
#include <sos/physmem.h>
#include <hwcore/paging.h>
#include <sos/kmem_vmm.h>
#include <sos/kmalloc.h>
#include <sos/klibc.h>
#include <sos/assert.h>
#include <drivers/x86_videomem.h>
#include <drivers/bochs.h>


/* Helper function to display each bits of a 32bits integer on the
   screen as dark or light carrets */
void display_bits(unsigned char row, unsigned char col,
		  unsigned char attribute,
		  sos_ui32_t integer)
{
  int i;
  /* Scan each bit of the integer, MSb first */
  for (i = 31 ; i >= 0 ; i--)
    {
      /* Test if bit i of 'integer' is set */
      int bit_i = (integer & (1 << i));
      /* Ascii 219 => dark carret, Ascii 177 => light carret */
      unsigned char ascii_code = bit_i?219:177;
      sos_x86_videomem_putchar(row, col++,
			       attribute,
			       ascii_code);
    }
}


/* Clock IRQ handler */
static void clk_it(int intid)
{
  static sos_ui32_t clock_count = 0;

  display_bits(0, 48,
	       SOS_X86_VIDEO_FG_LTGREEN | SOS_X86_VIDEO_BG_BLUE,
	       clock_count);
  clock_count++;
}


/* ======================================================================
 * Page fault exception handling
 */

/* Helper function to dump a backtrace on bochs and/or the console */

static void dump_backtrace(const struct sos_cpu_state *cpu_state,
			   sos_vaddr_t stack_bottom,
			   sos_size_t  stack_size,
			   sos_bool_t on_console,
			   sos_bool_t on_bochs)
{
  void backtracer(sos_vaddr_t PC,
			 sos_vaddr_t params,
			 sos_ui32_t depth,
			 void *custom_arg)
    {
      sos_ui32_t invalid = 0xffffffff, *arg1, *arg2, *arg3, *arg4;

      /* Get the address of the first 3 arguments from the
	 frame. Among these arguments, 0, 1, 2, 3 arguments might be
	 meaningful (depending on how many arguments the function may
	 take). */
      arg1 = (sos_ui32_t*)params;
      arg2 = (sos_ui32_t*)(params+4);
      arg3 = (sos_ui32_t*)(params+8);
      arg4 = (sos_ui32_t*)(params+12);

      /* Make sure the addresses of these arguments fit inside the
	 stack boundaries */
#define INTERVAL_OK(b,v,u) ( ((b) <= (sos_vaddr_t)(v)) \
                             && ((sos_vaddr_t)(v) < (u)) )
      if (!INTERVAL_OK(stack_bottom, arg1, stack_bottom + stack_size))
	arg1 = &invalid;
      if (!INTERVAL_OK(stack_bottom, arg2, stack_bottom + stack_size))
	arg2 = &invalid;
      if (!INTERVAL_OK(stack_bottom, arg3, stack_bottom + stack_size))
	arg3 = &invalid;
      if (!INTERVAL_OK(stack_bottom, arg4, stack_bottom + stack_size))
	arg4 = &invalid;

      /* Print the function context for this frame */
      if (on_bochs)
	sos_bochs_printf("[%d] PC=0x%x arg1=0x%x arg2=0x%x arg3=0x%x\n",
			 (unsigned)depth, (unsigned)PC,
			 (unsigned)*arg1, (unsigned)*arg2,
			 (unsigned)*arg3);

      if (on_console)
	sos_x86_videomem_printf(23-depth, 3,
				SOS_X86_VIDEO_BG_BLUE
				  | SOS_X86_VIDEO_FG_LTGREEN,
				"[%d] PC=0x%x arg1=0x%x arg2=0x%x arg3=0x%x arg4=0x%x",
				(unsigned)depth, PC,
				(unsigned)*arg1, (unsigned)*arg2,
				(unsigned)*arg3, (unsigned)*arg4);
      
    }
  sos_backtrace(cpu_state, 15, stack_bottom, stack_size, backtracer, NULL);
}


/* Page fault exception handler with demand paging for the kernel */
static void pgflt_ex(int intid, const struct sos_cpu_state *ctxt)
{
  static sos_ui32_t demand_paging_count = 0;
  sos_vaddr_t faulting_vaddr = sos_cpu_context_get_EX_faulting_vaddr(ctxt);
  sos_paddr_t ppage_paddr;

  /* Check if address is covered by any VMM range */
  if (! sos_kmem_vmm_is_valid_vaddr(faulting_vaddr))
    {
      /* No: The page fault is out of any kernel virtual region. For
	 the moment, we don't handle this. */
      dump_backtrace(ctxt,
		     bootstrap_stack_bottom,
		     bootstrap_stack_size,
		     TRUE, TRUE);
      sos_display_fatal_error("Unresolved page Fault at instruction 0x%x on access to address 0x%x (info=%x)!",
			      sos_cpu_context_get_PC(ctxt),
			      (unsigned)faulting_vaddr,
			      (unsigned)sos_cpu_context_get_EX_info(ctxt));
      SOS_ASSERT_FATAL(! "Got page fault (note: demand paging is disabled)");
    }


  /*
   * Demand paging
   */
 
  /* Update the number of demand paging requests handled */
  demand_paging_count ++;
  display_bits(0, 0,
	       SOS_X86_VIDEO_FG_LTRED | SOS_X86_VIDEO_BG_BLUE,
	       demand_paging_count);

  /* Allocate a new page for the virtual address */
  ppage_paddr = sos_physmem_ref_physpage_new(FALSE);
  if (! ppage_paddr)
    SOS_ASSERT_FATAL(! "TODO: implement swap. (Out of mem in demand paging because no swap for kernel yet !)");
  SOS_ASSERT_FATAL(SOS_OK == sos_paging_map(ppage_paddr,
					    SOS_PAGE_ALIGN_INF(faulting_vaddr),
					    FALSE,
					    SOS_VM_MAP_PROT_READ
					    | SOS_VM_MAP_PROT_WRITE
					    | SOS_VM_MAP_ATOMIC));
  sos_physmem_unref_physpage(ppage_paddr);

  /* Ok, we can now return to interrupted context */
}



/* ======================================================================
 * Demonstrate the use of the CPU kernet context management API:
 *  - A coroutine prints "Hlowrd" and switches to the other after each
 *    letter
 *  - A coroutine prints "el ol\n" and switches back to the other after
 *    each letter.
 * The first to reach the '\n' returns back to main.
 */
struct sos_cpu_state *ctxt_hello1;
struct sos_cpu_state *ctxt_hello2;
struct sos_cpu_state *ctxt_main;
sos_vaddr_t hello1_stack, hello2_stack;

static void reclaim_stack(sos_vaddr_t stack_vaddr)
{
  sos_kfree(stack_vaddr);
}


static void exit_hello12(sos_vaddr_t stack_vaddr)
{
  sos_cpu_context_exit_to(ctxt_main,
			  (sos_cpu_kstate_function_arg1_t*) reclaim_stack,
			  stack_vaddr);
}


static void hello1 (char *str)
{
  for ( ; *str != '\n' ; str++)
    {
      sos_bochs_printf("hello1: %c\n", *str);
      sos_cpu_context_switch(& ctxt_hello1, ctxt_hello2);
    }

  /* You can uncomment this in case you explicitly want to exit
     now. But returning from the function will do the same */
  /* sos_cpu_context_exit_to(ctxt_main,
			     (sos_cpu_kstate_function_arg1_t*) reclaim_stack,
			     hello1_stack); */
}


static void hello2 (char *str)
{
  for ( ; *str != '\n' ; str++)
    {
      sos_bochs_printf("hello2: %c\n", *str);
      sos_cpu_context_switch(& ctxt_hello2, ctxt_hello1);
    }

  /* You can uncomment this in case you explicitly want to exit
     now. But returning from the function will do the same */
  /* sos_cpu_context_exit_to(ctxt_main,
			     (sos_cpu_kstate_function_arg1_t*) reclaim_stack,
			     hello2_stack); */
}


void print_hello_world ()
{
#define DEMO_STACK_SIZE 1024
  /* Allocate the stacks */
  hello1_stack = sos_kmalloc(DEMO_STACK_SIZE, 0);
  hello2_stack = sos_kmalloc(DEMO_STACK_SIZE, 0);

  /* Initialize the coroutines' contexts */
  sos_cpu_kstate_init(&ctxt_hello1,
                      (sos_cpu_kstate_function_arg1_t*) hello1,
		      (sos_ui32_t) "Hlowrd",
                      (sos_vaddr_t) hello1_stack, DEMO_STACK_SIZE,
                      (sos_cpu_kstate_function_arg1_t*) exit_hello12,
		      (sos_ui32_t) hello1_stack);
  sos_cpu_kstate_init(&ctxt_hello2,
                      (sos_cpu_kstate_function_arg1_t*) hello2,
		      (sos_ui32_t) "el ol\n",
                      (sos_vaddr_t) hello2_stack, DEMO_STACK_SIZE,
                      (sos_cpu_kstate_function_arg1_t*) exit_hello12,
		      (sos_ui32_t) hello2_stack);

  /* Go to first coroutine */
  sos_bochs_printf("Printing Hello World\\n...\n");
  sos_cpu_context_switch(& ctxt_main, ctxt_hello1);

  /* The first coroutine to reach the '\n' switched back to us */
  sos_bochs_printf("Back in main !\n");
}


/* ======================================================================
 * Generate page faults on an unmapped but allocated kernel virtual
 * region, which results in a series of physical memory mappings for the
 * faulted pages.
 */
static void test_demand_paging(int nb_alloc_vpages, int nb_alloc_ppages)
{
  int i;
  sos_vaddr_t base_vaddr;

  sos_x86_videomem_printf(10, 0,
			  SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_LTGREEN,
			  "Demand paging test (alloc %dMB of VMM, test %dkB RAM)",
			  nb_alloc_vpages >> 8, nb_alloc_ppages << 2);
  
  /* Allocate virtual memory */
  base_vaddr = sos_kmem_vmm_alloc(nb_alloc_vpages, 0);

  SOS_ASSERT_FATAL(base_vaddr != (sos_vaddr_t)NULL);
  sos_x86_videomem_printf(11, 0,
			  SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			  "Allocated virtual region [0x%x, 0x%x[",
			  base_vaddr,
			  base_vaddr + nb_alloc_vpages*SOS_PAGE_SIZE);

  /* Now use part of it in physical memory */
  for (i = 0 ; (i < nb_alloc_ppages) && (i < nb_alloc_vpages) ; i++)
    {
      /* Compute an address inside the range */
      sos_ui32_t *value, j;
      sos_vaddr_t vaddr = base_vaddr;
      vaddr += (nb_alloc_vpages - (i + 1))*SOS_PAGE_SIZE;
      vaddr += 2345;

      sos_x86_videomem_printf(12, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Writing %d at virtual address 0x%x...",
			      i, vaddr);

      /* Write at this address */
      value = (sos_ui32_t*)vaddr;
      *value = i;

      /* Yep ! A new page should normally have been allocated for us */
      sos_x86_videomem_printf(13, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Value read at address 0x%x = %d",
			      vaddr, (unsigned)*value);
    }

  SOS_ASSERT_FATAL(SOS_OK == sos_kmem_vmm_free(base_vaddr));
  /* Yep ! A new page should normally have been allocated for us */
  sos_x86_videomem_printf(14, 0,
			  SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			  "Done (area un-allocated)");
}



/* ======================================================================
 * Shows how the backtrace stuff works
 */

/* Recursive function. Print the backtrace from the innermost function */
static void test_backtrace(int i, int magic, sos_vaddr_t stack_bottom,
			   sos_size_t  stack_size)
{
  if (i <= 0)
    {
      /* The page fault exception handler will print the backtrace of
	 this function, because address 0x42 is not mapped */
      *((char*)0x42) = 12;

      /* More direct variant: */
      /* dump_backtrace(NULL, stack_bottom, stack_size, TRUE, TRUE); */
    }
  else
    test_backtrace(i-1, magic, stack_bottom, stack_size);
}


/* ======================================================================
 * Parsing of Mathematical expressions
 *
 * This is a recursive lexer/parser/evaluator for arithmetical
 * expressions. Supports both binary +/-* and unary +- operators, as
 * well as parentheses.
 *
 * Terminal tokens (Lexer):
 *  - Number: positive integer number
 *  - Variable: ascii name (regexp: [a-zA-Z]+)
 *  - Operator: +*-/
 *  - Opening/closing parentheses
 *
 * Grammar (Parser):
 *  Expression ::= Term E'
 *  Expr_lr    ::= + Term Expr_lr | - Term Expr_lr | Nothing
 *  Term       ::= Factor Term_lr
 *  Term_lr    ::= * Factor Term_lr | / Factor Term_lr | Nothing
 *  Factor     ::= - Factor | + Factor | Scalar | ( Expression )
 *  Scalar     ::= Number | Variable
 *
 * Note. This is the left-recursive equivalent of the following basic grammar:
 *  Expression ::= Expression + Term | Expression - Term
 *  Term       ::= Term * Factor | Term / Factor
 *  factor     ::= - Factor | + Factor | Scalar | Variable | ( Expression )
 *  Scalar     ::= Number | Variable
 *
 * The parsing is composed of a 3 stages pipeline:
 *  - The reader: reads a string 1 character at a time, transferring
 *    the control back to lexer after each char. This function shows the
 *    interest in using coroutines, because its state (str) is
 *    implicitely stored in the stack between each iteration.
 *  - The lexer: consumes the characters from the reader and identifies
 *    the terminal tokens, 1 token at a time, transferring control back
 *    to the parser after each token. This function shows the interest
 *    in using coroutines, because its state (c and got_what_before) is
 *    implicitely stored in the stack between each iteration.
 *  - The parser: consumes the tokens from the lexer and builds the
 *    syntax tree of the expression. There is no real algorithmic
 *    interest in defining a coroutine devoted to do this. HOWEVER, we
 *    do use one for that because this allows us to switch to a much
 *    deeper stack. Actually, the parser is highly recursive, so that
 *    the default 16kB stack of the sos_main() function might not be
 *    enough. Here, we switch to a 64kB stack, which is safer for
 *    recursive functions. The Parser uses intermediary functions: these
 *    are defined and implemented as internal nested functions. This is
 *    just for the sake of clarity, and is absolutely not mandatory for
 *    the algorithm: one can transfer these functions out of the parser
 *    function without restriction.
 *
 * The evaluator is another recursive function that reuses the
 * parser's stack to evaluate the parsed expression with the given
 * values for the variables present in the expression. As for the
 * parser function, this function defines and uses a nested function,
 * which can be extracted from the main evaluation function at will.
 *
 * All these functions support a kind of "exception" feature: when
 * something goes wrong, control is transferred DIRECTLY back to the
 * sos_main() context, without unrolling the recursions. This shows
 * how exceptions basically work, but one should not consider this as
 * a reference exceptions implementation. Real exception mechanisms
 * (such as that in the C++ language) call the destructors to the
 * objects allocated on the stack during the "stack unwinding" process
 * upon exception handling, which complicates a lot the mechanism. We
 * don't have real Objects here (in the OOP sense, full-featured with
 * destructors), so we don't have to complicate things.
 *
 * After this little coroutine demo, one should forget all about such
 * a low-level manual direct manipulation of stacks. This would
 * probably mess up the whole kernel to do what we do here (locked
 * resources such as mutex/semaphore won't be correctly unlocked,
 * ...). Higher level "kernel thread" primitives will soon be
 * presented, which provide a higher-level set of APIs to manage CPU
 * contexts. You'll have to use EXCLUSIVELY those APIs. If you still
 * need a huge stack to do recursion for example, please don't even
 * think of changing manually the stack for something bigger ! Simply
 * rethink your algorithm, making it non-recursive.
 */


/* The stacks involved */
static char stack_reader[1024];
static char stack_lexer[1024];
static char deep_stack[65536]; /* For the parser and the evaluator */

/* The CPU states for the various coroutines */
static struct sos_cpu_state *st_reader, *st_lexer, *st_parser,
  *st_eval, *st_free, *st_main;


/*
 * Default exit/reclaim functions: return control to the "sos_main()"
 * context
 */
static void reclaim(int unused)
{
}
static void func_exit(sos_ui32_t unused)
{
  sos_cpu_context_exit_to(st_main, (sos_cpu_kstate_function_arg1_t*)reclaim, 0);
}


/*
 * The reader coroutine and associated variable. This coroutine could
 * have been a normal function, except that the current parsed
 * character would have to be stored somewhere.
 */
static char data_reader_to_lexer;

static void func_reader(const char *str)
{
  for ( ; str && (*str != '\0') ; str++)
    {
      data_reader_to_lexer = *str;
      sos_cpu_context_switch(& st_reader, st_lexer);
    }

  data_reader_to_lexer = '\0';
  sos_cpu_context_switch(& st_reader, st_lexer);
}


/*
 * The Lexer coroutine and associated types/variables. This coroutine
 * could have been a normal function, except that the current parsed
 * character, token and previous token would have to be stored
 * somewhere.
 */
#define STR_VAR_MAXLEN 16
static struct lex_elem
{
  enum { LEX_IS_NUMBER, LEX_IS_OPER, LEX_IS_VAR,
	 LEX_IS_OPENPAR, LEX_IS_CLOSEPAR, LEX_END } type;
  union {
    int  number;
    char operator;
    char var[STR_VAR_MAXLEN];
  };
} data_lexer_to_parser;

static void func_lexer(sos_ui32_t unused)
{
  char c;
  enum { GOT_SPACE, GOT_NUM, GOT_OP, GOT_STR,
	 GOT_OPENPAR, GOT_CLOSEPAR } got_what, got_what_before;

  data_lexer_to_parser.number = 0;
  got_what_before = GOT_SPACE;
  do
    {
      /* Consume one character from the reader */
      sos_cpu_context_switch(& st_lexer, st_reader);
      c = data_reader_to_lexer;

      /* Classify the consumed character */
      if ( (c >= '0') && (c <= '9') )
	got_what = GOT_NUM;
      else if ( (c == '+') || (c == '-') || (c == '*') || (c == '/') )
	got_what = GOT_OP;
      else if ( ( (c >= 'a') && (c <= 'z') )
		|| ( (c >= 'A') && (c <= 'Z') ) )
	got_what = GOT_STR;
      else if (c == '(')
	got_what = GOT_OPENPAR;
      else if (c == ')')
	got_what = GOT_CLOSEPAR;
      else
	got_what = GOT_SPACE;

      /* Determine whether the current token is ended */
      if ( (got_what != got_what_before)
	   || (got_what_before == GOT_OP)
	   || (got_what_before == GOT_OPENPAR)
	   || (got_what_before == GOT_CLOSEPAR) )
	{
	  /* return control back to the parser if the previous token
	     has been recognized */
	  if ( (got_what_before != GOT_SPACE) )
	    sos_cpu_context_switch(& st_lexer, st_parser);

	  data_lexer_to_parser.number = 0;
	}

      /* Update the token being currently recognized */
      if (got_what == GOT_OP)
	{
	  data_lexer_to_parser.type = LEX_IS_OPER;
	  data_lexer_to_parser.operator = c;
	}
      else if (got_what == GOT_NUM)
	{
	  data_lexer_to_parser.type = LEX_IS_NUMBER;
	  data_lexer_to_parser.number *= 10;
	  data_lexer_to_parser.number += (c - '0');
	}
      else if (got_what == GOT_STR)
	{
	  char to_cat[] = { c, '\0' };
	  data_lexer_to_parser.type = LEX_IS_VAR;
	  strzcat(data_lexer_to_parser.var, to_cat, STR_VAR_MAXLEN);
	}
      else if (got_what == GOT_OPENPAR)
	data_lexer_to_parser.type = LEX_IS_OPENPAR;
      else if (got_what == GOT_CLOSEPAR)
	data_lexer_to_parser.type = LEX_IS_CLOSEPAR;

      got_what_before = got_what;
    }
  while (c != '\0');

  /* Transfer last recognized token to the parser */
  if ( (got_what_before != GOT_SPACE) )
    sos_cpu_context_switch(& st_lexer, st_parser);

  /* Signal that no more token are available */
  data_lexer_to_parser.type = LEX_END;
  sos_cpu_context_switch(& st_lexer, st_parser);

  /* Exception: parser asks for a token AFTER having received the last
     one */
  sos_bochs_printf("Error: end of string already reached !\n");
  sos_cpu_context_switch(& st_lexer, st_main);
}


/*
 * The Parser coroutine and associated types/variables
 */
struct syntax_node
{
  enum { YY_IS_BINOP, YY_IS_UNAROP, YY_IS_NUM, YY_IS_VAR } type;
  union
  {
    int  number;
    char var[STR_VAR_MAXLEN];
    struct
    {
      char op;
      struct syntax_node *parm_left, *parm_right;
    } binop;
    struct
    {
      char op;
      struct syntax_node *parm;
    } unarop;
  };
};

// BEGIN AUX FUNCTIONS
  struct syntax_node *alloc_node_num(int val);
  struct syntax_node *alloc_node_var(const char * name);
  struct syntax_node *alloc_node_binop(char op,
					      struct syntax_node *parm_left,
					      struct syntax_node *parm_right);
  struct syntax_node *alloc_node_unarop(char op,
					       struct syntax_node *parm);
  struct syntax_node * get_expr();
  struct syntax_node * get_expr_lr(struct syntax_node *n);
  struct syntax_node * get_term();
  struct syntax_node * get_term_lr(struct syntax_node *n);
  struct syntax_node * get_factor();
  struct syntax_node * get_scalar();

  /* Create a new node to store a number */
  struct syntax_node *alloc_node_num(int val)
    {
      struct syntax_node *n
	= (struct syntax_node*) sos_kmalloc(sizeof(struct syntax_node), 0);
      n->type   = YY_IS_NUM;
      n->number = val;
      return n;
    }
  /* Create a new node to store a variable */
  struct syntax_node *alloc_node_var(const char * name)
    {
      struct syntax_node *n
	= (struct syntax_node*) sos_kmalloc(sizeof(struct syntax_node), 0);
      n->type   = YY_IS_VAR;
      strzcpy(n->var, name, STR_VAR_MAXLEN);
      return n;
    }
  /* Create a new node to store a binary operator */
  struct syntax_node *alloc_node_binop(char op,
					      struct syntax_node *parm_left,
					      struct syntax_node *parm_right)
    {
      struct syntax_node *n
	= (struct syntax_node*) sos_kmalloc(sizeof(struct syntax_node), 0);
      n->type             = YY_IS_BINOP;
      n->binop.op         = op;
      n->binop.parm_left  = parm_left;
      n->binop.parm_right = parm_right;
      return n;
    }
  /* Create a new node to store a unary operator */
  struct syntax_node *alloc_node_unarop(char op,
					       struct syntax_node *parm)
    {
      struct syntax_node *n
	= (struct syntax_node*) sos_kmalloc(sizeof(struct syntax_node), 0);
      n->type        = YY_IS_UNAROP;
      n->unarop.op   = op;
      n->unarop.parm = parm;
      return n;
    }

  /* Raise an exception: transfer control back to main context,
     without unrolling the whole recursion */
  void parser_exception(const char *str)
    {
      sos_bochs_printf("Parser exception: %s\n", str);
      sos_cpu_context_switch(& st_parser, st_main);
    }

  /* Consume the current terminal "number" token and ask for a new
     token */
  int get_number()
    {
      int v;
      if (data_lexer_to_parser.type != LEX_IS_NUMBER)
	parser_exception("Expected number");
      v = data_lexer_to_parser.number;
      sos_cpu_context_switch(& st_parser, st_lexer);
      return v;
    }
  /* Consume the current terminal "variable" token and ask for a new
     token */
  void get_str(char name[STR_VAR_MAXLEN])
    {
      if (data_lexer_to_parser.type != LEX_IS_VAR)
	parser_exception("Expected variable");
      strzcpy(name, data_lexer_to_parser.var, STR_VAR_MAXLEN);
      sos_cpu_context_switch(& st_parser, st_lexer);
    }
  /* Consume the current terminal "operator" token and ask for a new
     token */
  char get_op()
    {
      char op;
      if (data_lexer_to_parser.type != LEX_IS_OPER)
	parser_exception("Expected operator");
      op = data_lexer_to_parser.operator;
      sos_cpu_context_switch(& st_parser, st_lexer);
      return op;
    }
  /* Consume the current terminal "parenthese" token and ask for a new
     token */
  void get_par()
    {
      if ( (data_lexer_to_parser.type != LEX_IS_OPENPAR)
	   && (data_lexer_to_parser.type != LEX_IS_CLOSEPAR) )
	parser_exception("Expected parenthese");
      sos_cpu_context_switch(& st_parser, st_lexer);
    }

  /* Parse an Expression */
  struct syntax_node * get_expr()
    {
      struct syntax_node *t = get_term();
      return get_expr_lr(t);
    }
  /* Parse an Expr_lr */
  struct syntax_node * get_expr_lr(struct syntax_node *n)
    {
      if ( (data_lexer_to_parser.type == LEX_IS_OPER)
	   && ( (data_lexer_to_parser.operator == '+')
		|| (data_lexer_to_parser.operator == '-') ) )
	{
	  char op = get_op();
	  struct syntax_node *term = get_term();
	  struct syntax_node *node_op = alloc_node_binop(op, n, term);
	  return get_expr_lr(node_op);
	}
      return n;
    }
  /* Parse a Term */
  struct syntax_node * get_term()
    {
      struct syntax_node *f1 = get_factor();
      return get_term_lr(f1);
    }
  /* Parse a Term_lr */
  struct syntax_node * get_term_lr(struct syntax_node *n)
    {
      if ( (data_lexer_to_parser.type == LEX_IS_OPER)
	   && ( (data_lexer_to_parser.operator == '*')
		|| (data_lexer_to_parser.operator == '/') ) )
	{
	  char op = get_op();
	  struct syntax_node *factor = get_factor();
	  struct syntax_node *node_op = alloc_node_binop(op, n, factor);
	  return get_term_lr(node_op);
	}
      return n;
    }
  /* Parse a Factor */
  struct syntax_node * get_factor()
    {
      if ( (data_lexer_to_parser.type == LEX_IS_OPER)
	   && ( (data_lexer_to_parser.operator == '-')
		|| (data_lexer_to_parser.operator == '+') ) )
	{ char op = data_lexer_to_parser.operator;
	get_op(); return alloc_node_unarop(op, get_factor()); }
      else if (data_lexer_to_parser.type == LEX_IS_OPENPAR)
	{
	  struct syntax_node *expr;
	  get_par();
	  expr = get_expr();
	  if (data_lexer_to_parser.type != LEX_IS_CLOSEPAR)
	    parser_exception("Mismatched parentheses");
	  get_par();
	  return expr;
	}
  
      return get_scalar();
    }
  /* Parse a Scalar */
  struct syntax_node * get_scalar()
    {
      if (data_lexer_to_parser.type != LEX_IS_NUMBER)
	{
	  char var[STR_VAR_MAXLEN];
	  get_str(var);
	  return alloc_node_var(var);
	}
      return alloc_node_num(get_number());
    }

// END AUX FUNCTIONS


static void func_parser(struct syntax_node ** syntax_tree)
{
  /*
   * Body of the function
   */

  /* Get the first token */
  sos_cpu_context_switch(& st_parser, st_lexer);

  /* Begin the parsing ! */
  *syntax_tree = get_expr();
  /* The result is returned in the syntax_tree parameter */
}


/*
 * Setup the parser's pipeline
 */
static struct syntax_node * parse_expression(const char *expr)
{
  struct syntax_node *retval = NULL;

  /* Build the context of the functions in the pipeline */
  sos_cpu_kstate_init(& st_reader,
		      (sos_cpu_kstate_function_arg1_t*)func_reader,
		      (sos_ui32_t)expr,
		      (sos_vaddr_t)stack_reader, sizeof(stack_reader),
		      (sos_cpu_kstate_function_arg1_t*)func_exit, 0);
  sos_cpu_kstate_init(& st_lexer,
		      (sos_cpu_kstate_function_arg1_t*)func_lexer,
		      0,
		      (sos_vaddr_t)stack_lexer, sizeof(stack_lexer),
		      (sos_cpu_kstate_function_arg1_t*)func_exit, 0);
  sos_cpu_kstate_init(& st_parser,
		      (sos_cpu_kstate_function_arg1_t*)func_parser,
		      (sos_ui32_t) /* syntax tree ! */&retval,
		      (sos_vaddr_t)deep_stack, sizeof(deep_stack),
		      (sos_cpu_kstate_function_arg1_t*)func_exit, 0);

  /* Parse the expression */
  sos_cpu_context_switch(& st_main, st_parser);
  return retval;
}


/*
 * The Evaluator coroutine and associated types/variables
 */
struct func_eval_params
{
  const struct syntax_node *e;
  const char **var_name;
  int *var_val;
  int nb_vars;

  int result;
};

static void func_eval(struct func_eval_params *parms)
{
  /* The internal (recursive) nested function to evaluate each node of
     the syntax tree */
  int rec_eval(const struct syntax_node *n,
		      const char* var_name[], int var_val[], int nb_vars)
    {
      switch (n->type)
	{
	case YY_IS_NUM:
	  return n->number;

	case YY_IS_VAR:
	  {
	    int i;
	    for (i = 0 ; i < nb_vars ; i++)
	      if (0 == strcmp(var_name[i], n->var))
		return var_val[i];

	    /* Exception: no variable with that name ! */
	    sos_bochs_printf("ERROR: unknown variable %s\n", n->var);
	    sos_cpu_context_switch(& st_eval, st_main);
	  }

	case YY_IS_BINOP:
	  {
	    int left = rec_eval(n->binop.parm_left,
				var_name, var_val, nb_vars);
	    int right = rec_eval(n->binop.parm_right,
				 var_name, var_val, nb_vars);
	    switch (n->binop.op)
	      {
	      case '+': return left + right;
	      case '-': return left - right;
	      case '*': return left * right;
	      case '/': return left / right;
	      default:
		/* Exception: no such operator (INTERNAL error) ! */
		sos_bochs_printf("ERROR: unknown binop %c\n", n->binop.op);
		sos_cpu_context_switch(& st_eval, st_main);
	      }
	  }

	case YY_IS_UNAROP:
	  {
	    int arg = rec_eval(n->unarop.parm, var_name, var_val, nb_vars);
	    switch (n->unarop.op)
	      {
	      case '-': return -arg;
	      case '+': return arg;
	      default:
		/* Exception: no such operator (INTERNAL error) ! */
		sos_bochs_printf("ERROR: unknown unarop %c\n", n->unarop.op);
		sos_cpu_context_switch(& st_eval, st_main);
	      }
	  }
	}
      
      /* Exception: no such syntax node (INTERNAL error) ! */
      sos_bochs_printf("ERROR: invalid node type\n");
      sos_cpu_context_switch(& st_eval, st_main);
      return -1; /* let's make gcc happy */
    }


  /*
   * Function BODY
   */
  /* Update p.result returned back to calling function */
  parms->result
    = rec_eval(parms->e, parms->var_name, parms->var_val, parms->nb_vars);
}

/*
 * Change the stack for something larger in order to call the
 * recursive function above in a safe way
 */
static int eval_expression(const struct syntax_node *e,
			   const char* var_name[], int var_val[], int nb_vars)
{
  struct func_eval_params p
    = (struct func_eval_params){ .e=e,
				 .var_name=var_name,
				 .var_val=var_val,
				 .nb_vars=nb_vars,
				 .result = 0 };

  sos_cpu_kstate_init(& st_eval,
		      (sos_cpu_kstate_function_arg1_t*)func_eval,
		      (sos_ui32_t)/* p.result is modified upon success */&p,
		      (sos_vaddr_t)deep_stack, sizeof(deep_stack),
		      (sos_cpu_kstate_function_arg1_t*)func_exit, 0);

  /* Go ! */
  sos_cpu_context_switch(& st_main, st_eval);
  return p.result;
}


/*
 * Function to free the syntax tree
 */
static void func_free(struct syntax_node *n)
{
  switch (n->type)
    {
    case YY_IS_NUM:
    case YY_IS_VAR:
      break;
      
    case YY_IS_BINOP:
      func_free(n->binop.parm_left);
      func_free(n->binop.parm_right);
      break;
      
    case YY_IS_UNAROP:
      func_free(n->unarop.parm);
      break;
    }
  
  sos_kfree((sos_vaddr_t)n);
}

/*
 * Change the stack for something larger in order to call the
 * recursive function above in a safe way
 */
static void free_syntax_tree(struct syntax_node *tree)
{
  sos_cpu_kstate_init(& st_free,
		      (sos_cpu_kstate_function_arg1_t*)func_free,
		      (sos_ui32_t)tree,
		      (sos_vaddr_t)deep_stack, sizeof(deep_stack),
		      (sos_cpu_kstate_function_arg1_t*)func_exit, 0);

  /* Go ! */
  sos_cpu_context_switch(& st_main, st_free);
}


/* ======================================================================
 * The C entry point of our operating system
 */
void sos_main(unsigned long magic, unsigned long addr)
{
  unsigned i;
  sos_paddr_t sos_kernel_core_base_paddr, sos_kernel_core_top_paddr;
  struct syntax_node *syntax_tree;

  /* Grub sends us a structure, called multiboot_info_t with a lot of
     precious informations about the system, see the multiboot
     documentation for more information. */
  multiboot_info_t *mbi;
  mbi = (multiboot_info_t *) addr;

  /* Setup bochs and console, and clear the console */
  sos_bochs_setup();

  sos_x86_videomem_setup();
  sos_x86_videomem_cls(SOS_X86_VIDEO_BG_BLUE);

  /* Greetings from SOS */
  if (magic == MULTIBOOT_BOOTLOADER_MAGIC)
    /* Loaded with Grub */
    sos_x86_videomem_printf(1, 0,
			    SOS_X86_VIDEO_FG_YELLOW | SOS_X86_VIDEO_BG_BLUE,
			    "Welcome From GRUB to %s%c RAM is %dMB (upper mem = 0x%x kB)",
			    "SOS article 6", ',',
			    (unsigned)(mbi->mem_upper >> 10) + 1,
			    (unsigned)mbi->mem_upper);
  else
    /* Not loaded with grub */
    sos_x86_videomem_printf(1, 0,
			    SOS_X86_VIDEO_FG_YELLOW | SOS_X86_VIDEO_BG_BLUE,
			    "Welcome to SOS article 6");

  sos_bochs_putstring("Message in a bochs: This is SOS article 6.\n");

  /* Setup CPU segmentation and IRQ subsystem */
  sos_gdt_subsystem_setup();
  sos_idt_subsystem_setup();

  /* Setup SOS IRQs and exceptions subsystem */
  sos_exception_subsystem_setup();
  sos_irq_subsystem_setup();

  /* Configure the timer so as to raise the IRQ0 at a 100Hz rate */
  sos_i8254_set_frequency(100);

  /* We need a multiboot-compliant boot loader to get the size of the RAM */
  if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
    {
      sos_x86_videomem_putstring(20, 0,
				 SOS_X86_VIDEO_FG_LTRED
				   | SOS_X86_VIDEO_BG_BLUE
				   | SOS_X86_VIDEO_FG_BLINKING,
				 "I'm not loaded with Grub !");
      /* STOP ! */
      for (;;)
	continue;
    }

  /*
   * Some interrupt handlers
   */

  /* Binding some HW interrupts and exceptions to software routines */
  sos_irq_set_routine(SOS_IRQ_TIMER,
		      clk_it);

  /*
   * Setup physical memory management
   */

  /* Multiboot says: "The value returned for upper memory is maximally
     the address of the first upper memory hole minus 1 megabyte.". It
     also adds: "It is not guaranteed to be this value." aka "YMMV" ;) */
  sos_physmem_subsystem_setup((mbi->mem_upper<<10) + (1<<20),
			      & sos_kernel_core_base_paddr,
			      & sos_kernel_core_top_paddr);
  
  /*
   * Switch to paged-memory mode
   */

  /* Disabling interrupts should seem more correct, but it's not really
     necessary at this stage */
  SOS_ASSERT_FATAL(SOS_OK ==
		   sos_paging_subsystem_setup(sos_kernel_core_base_paddr,
					      sos_kernel_core_top_paddr));
  
  /* Bind the page fault exception */
  sos_exception_set_routine(SOS_EXCEPT_PAGE_FAULT,
			    pgflt_ex);

  /*
   * Setup kernel virtual memory allocator
   */

  if (sos_kmem_vmm_subsystem_setup(sos_kernel_core_base_paddr,
				   sos_kernel_core_top_paddr,
				   bootstrap_stack_bottom,
				   bootstrap_stack_bottom
				   + bootstrap_stack_size))
    sos_bochs_printf("Could not setup the Kernel virtual space allocator\n");

  if (sos_kmalloc_subsystem_setup())
    sos_bochs_printf("Could not setup the Kmalloc subsystem\n");

  /*
   * Enabling the HW interrupts here, this will make the timer HW
   * interrupt call our clk_it handler
   */
  asm volatile ("sti\n");

  /*
   * Print hello world using coroutines
   */
  print_hello_world();


  /*
   * Run coroutine tests
   */
  sos_x86_videomem_printf(4, 0,
			  SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_LTGREEN,
			  "Coroutine test");
  sos_x86_videomem_printf(5, 0,
			  SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			  "Parsing...");
  syntax_tree = parse_expression(" -  ( (69/ toto)+ ( (( - +-- 1))) + --toto*((toto+ - - y - +2*(y-toto))*y) +2*(y-toto) )/- (( y - toto)*2)");

  if (syntax_tree != NULL)
    {
      sos_x86_videomem_printf(6, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Evaluating...");
      sos_x86_videomem_printf(7, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Result=%d (if 0: check bochs output)",
			      eval_expression(syntax_tree,
					      (const char*[]){"toto", "y"},
					      (int[]){3, 4},
					      2));
      free_syntax_tree(syntax_tree);
      sos_x86_videomem_printf(8, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Done (un-allocated syntax tree)");
    }
  else
    {
      sos_x86_videomem_printf(6, 0,
			      SOS_X86_VIDEO_BG_BLUE | SOS_X86_VIDEO_FG_YELLOW,
			      "Error in parsing (see bochs output)");
    }

  /*
   * Run some demand-paging tests
   */
  test_demand_paging(234567, 500);


  /*
   * Create an un-resolved page fault, which will make the page fault
   * handler print the backtrace.
   */
  test_backtrace(6, 0xdeadbeef, bootstrap_stack_bottom, bootstrap_stack_size);

  /*
   * System should be halted BEFORE here !
   */


  /* An operatig system never ends */
  for (;;)
    {
      /* Remove this instruction if you get an "Invalid opcode" CPU
	 exception (old 80386 CPU) */
      asm("hlt\n");

      continue;
    }
}