1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
#include "V86Thread.class.h"
#include <TaskManager/Task.ns.h>
#include <TaskManager/V86/V86.ns.h>
//in v86.wtf.asm
extern "C" void v86_run(u32int pd_phys, //A page directory's physical address
v86_regs_t* regs);
/*
* Set up a V86 task :
* Allocate space for the kernel stack
* Map frames in lower 1MB
* Find somewhere to put the stack and the code, still in lower 1MB
* Copy the 16bit code to that place
* Setup values on the kernel stack for starting the thread (V86Thread::runV86),
* giving it entry point and stack location
*/
V86Thread::V86Thread(v86_function_t* entry, v86_retval_t* ret) : Thread() {
m_ret = ret;
setup();
m_continueOnIret = true;
m_ret->regs->cs = V86::allocSeg(entry->size); //Alocate segments for the code to run in
u8int* codeptr = (u8int*)(FP_TO_LINEAR(m_ret->regs->cs, 0));
memcpy(codeptr, entry->data, entry->size); //Copy the code there
m_ret->regs->ip = 0;
m_state = T_RUNNING;
m_process->registerThread(this);
Task::registerThread(this);
}
V86Thread::V86Thread(u8int int_no, v86_retval_t* ret) : Thread() {
m_ret = ret;
setup();
m_continueOnIret = false;
//setup CS:IP for running interrupt
u16int* ivt = 0;
m_ret->regs->cs = ivt[int_no * 2 + 1];
m_ret->regs->ip = ivt[int_no * 2];
m_state = T_RUNNING;
m_process->registerThread(this);
Task::registerThread(this);
}
void V86Thread::setup() {
m_ret->finished = false; m_xchgspace = 0; m_isKernel = true;
m_process = Task::currProcess();
m_if = true; //Set virtual interrupt flag
m_kernelStack.addr = Mem::alloc(STACKSIZE); m_kernelStack.size = STACKSIZE; //Setup kernel stack
m_process->getPagedir()->switchTo();
//Map all lower memory
V86::map();
//Allocate space for v86 stack
m_ret->regs->ss = V86::allocSeg(V86_STACKSIZE);
m_ret->regs->sp = V86_STACKSIZE - 4;
//Setup kernel stack for running v86_run (entry procedure)
u32int* stack = (u32int*)((u32int)m_kernelStack.addr + m_kernelStack.size);
stack--; *stack = (u32int)m_ret->regs;
stack--; *stack = m_process->getPagedir()->physicalAddr;
stack--; *stack = 0;
m_esp = (u32int)stack;
m_ebp = m_esp + 4;
m_eip = (u32int)v86_run;
}
bool V86Thread::handleV86GPF(registers_t *regs) {
u8int* ip = (u8int*)FP_TO_LINEAR(regs->cs, regs->eip);
u16int *ivt = 0;
u16int *stack = (u16int*)FP_TO_LINEAR(regs->ss, (regs->useresp & 0xFFFF));
u32int *stack32 = (u32int*)stack;
bool is_operand32 = false, is_address32 = false;
while (true) {
switch (ip[0]) {
case 0x66: // O32
is_operand32 = true;
ip++; regs->eip = (u16int)(regs->eip + 1);
break;
case 0x67: // A32
is_address32 = true;
ip++; regs->eip = (u16int)(regs->eip + 1);
break;
case 0x9C: // PUSHF
if (is_operand32) {
regs->useresp = ((regs->useresp & 0xFFFF) - 4) & 0xFFFF;
stack32--;
*stack32 = regs->eflags & VALID_FLAGS;
if (m_if)
*stack32 |= EFLAGS_IF;
else
*stack32 &= ~EFLAGS_IF;
} else {
regs->useresp = ((regs->useresp & 0xFFFF) - 2) & 0xFFFF;
stack--;
*stack = regs->eflags;
if (m_if)
*stack |= EFLAGS_IF;
else
*stack &= ~EFLAGS_IF;
}
regs->eip = (u16int)(regs->eip + 1);
return true;
case 0x9D: // POPF
if (is_operand32) {
regs->eflags = EFLAGS_IF | EFLAGS_VM | (stack32[0] & VALID_FLAGS);
m_if = (stack32[0] & EFLAGS_IF) != 0;
regs->useresp = ((regs->useresp & 0xFFFF) + 4) & 0xFFFF;
} else {
regs->eflags = EFLAGS_IF | EFLAGS_VM | stack[0];
m_if = (stack[0] & EFLAGS_IF) != 0;
regs->useresp = ((regs->useresp & 0xFFFF) + 2) & 0xFFFF;
}
regs->eip = (u16int)(regs->eip + 1);
return true;
case 0xCD: // INT N
if (ip[1] == 3) return false; //Breakpoint exception, here used for telling that thread has ended
stack -= 3;
regs->useresp = ((regs->useresp & 0xFFFF) - 6) & 0xFFFF;
stack[0] = (u16int)(regs->eip + 2);
stack[1] = regs->cs;
stack[2] = (u16int)regs->eflags;
regs->cs = ivt[ip[1] * 2 + 1];
regs->eip = ivt[ip[1] * 2];
return true;
case 0xCF: // IRET
regs->eip = stack[0];
regs->cs = stack[1];
regs->eflags = EFLAGS_IF | EFLAGS_VM | stack[2];
m_if = (stack[2] & EFLAGS_IF) != 0;
regs->useresp = ((regs->useresp & 0xFFFF) + 6) & 0xFFFF;
return m_continueOnIret;
case 0xFA: // CLI
m_if = false;
regs->eip = (u16int)(regs->eip + 1);
return true;
case 0xFB: // STI
m_if = true;
regs->eip = (u16int)(regs->eip + 1);
return true;
default:
return false;
}
}
}
void V86Thread::handleException(registers_t *regs, int no) {
if (no == 13) { //General protection fault
if (!handleV86GPF(regs)) {
m_ret->finished = true;
m_ret->regs->ax = (u16int)regs->eax;
m_ret->regs->bx = (u16int)regs->ebx;
m_ret->regs->cx = (u16int)regs->ecx;
m_ret->regs->dx = (u16int)regs->edx;
m_ret->regs->di = (u16int)regs->edi;
m_ret->regs->si = (u16int)regs->esi;
Task::currentThreadExits(0);
return;
}
} else {
Thread::handleException(regs, no);
}
}
|