1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
#!/usr/bin/env python
import logging
import numpy
import sys
import importlib
from contextlib import closing
import theano
from theano import tensor
from theano.tensor.shared_randomstreams import RandomStreams
from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER
from blocks.extensions import Printing, SimpleExtension
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring
from blocks.extensions.saveload import Checkpoint, Load
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent, StepRule, CompositeRule
try:
from blocks.extras.extensions.plot import Plot
plot_avail = True
except ImportError:
plot_avail = False
import datastream
from paramsaveload import SaveLoadParams
from gentext import GenText
from ircext import IRCClientExt
logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)
sys.setrecursionlimit(500000)
if __name__ == "__main__":
if len(sys.argv) != 2:
print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
sys.exit(1)
model_name = sys.argv[1]
config = importlib.import_module('%s' % model_name)
class ElementwiseRemoveNotFinite(StepRule):
def __init__(self, scaler=0.1):
self.scaler = scaler
def compute_step(self, param, previous_step):
not_finite = tensor.isnan(previous_step) + tensor.isinf(previous_step)
step = tensor.switch(not_finite, self.scaler * param, previous_step)
return step, []
class ResetStates(SimpleExtension):
def __init__(self, state_vars, **kwargs):
super(ResetStates, self).__init__(**kwargs)
self.f = theano.function(
inputs=[], outputs=[],
updates=[(v, v.zeros_like()) for v in state_vars])
def do(self, which_callback, *args):
self.f()
def train_model(m, train_stream, dump_path=None):
# Define the model
model = Model(m.sgd_cost)
cg = ComputationGraph(m.sgd_cost)
algorithm = GradientDescent(cost=m.sgd_cost,
step_rule=CompositeRule([
ElementwiseRemoveNotFinite(),
config.step_rule]),
parameters=cg.parameters)
algorithm.add_updates(m.states)
monitor_vars = [v for p in m.monitor_vars for v in p]
extensions = [
TrainingDataMonitoring(
monitor_vars,
prefix='train', every_n_epochs=1),
Printing(every_n_epochs=1, after_epoch=False),
ResetStates([v for v, _ in m.states], after_epoch=True)
]
if plot_avail:
plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars]
extensions.append(
Plot(document='text_'+model_name+'_'+config.param_desc,
channels=plot_channels,
server_url='http://eos6:5006/',
every_n_epochs=1, after_epoch=False)
)
if config.save_freq is not None and dump_path is not None:
extensions.append(
SaveLoadParams(path=dump_path+'.pkl',
model=model,
before_training=True,
after_training=True,
after_epoch=False,
every_n_epochs=config.save_freq)
)
if config.sample_freq is not None:
extensions.append(
GenText(m, '\nalex\ttu crois ?\n',
config.sample_len, config.sample_temperature,
every_n_epochs=config.sample_freq,
after_epoch=False, before_training=True)
)
if config.on_irc:
extensions.append(
IRCClientExt(m, config.sample_temperature,
server='irc.ulminfo.fr',
port=6667,
nick='frigo',
channels=['#frigotest', '#courssysteme'],
after_batch=True)
)
main_loop = MainLoop(
model=model,
data_stream=train_stream,
algorithm=algorithm,
extensions=extensions
)
main_loop.run()
if __name__ == "__main__":
# Build datastream
train_stream = datastream.setup_datastream('data/logcompil.txt',
config.num_seqs,
config.seq_len,
config.seq_div_size)
# Build model
m = config.Model()
m.pred.name = 'pred'
# Train the model
saveloc = 'model_data/%s-%s' % (model_name, config.param_desc)
train_model(m, train_stream, dump_path=saveloc)
|