1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
import theano
from theano import tensor
import numpy
from blocks.bricks import Softmax, Linear
from blocks.bricks.recurrent import LSTM
from blocks.initialization import IsotropicGaussian, Constant
from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
class Model():
def __init__(self, config):
inp = tensor.imatrix('bytes')
in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int32').reshape((1, 1, config.io_dim)),
inp[:, :, None]).astype(theano.config.floatX)
in_onehot.name = 'in_onehot'
costs_xreg = []
# Construct hidden states
dims = [config.io_dim]
hidden = [in_onehot.dimshuffle(1, 0, 2)]
bricks = []
states = []
for i in xrange(1, len(config.layers)+1):
p = config.layers[i-1]
init_state = theano.shared(numpy.zeros((config.num_seqs, p['dim'])).astype(theano.config.floatX),
name='st0_%d'%i)
init_cell = theano.shared(numpy.zeros((config.num_seqs, p['dim'])).astype(theano.config.floatX),
name='cell0_%d'%i)
linear = Linear(input_dim=dims[i-1], output_dim=4*p['dim'],
name="lstm_in_%d"%i)
bricks.append(linear)
inter = linear.apply(hidden[-1])
if config.i2h_all and i > 1:
linear2 = Linear(input_dim=dims[0], output_dim=4*p['dim'],
name="lstm_in0_%d"%i)
bricks.append(linear2)
inter = inter + linear2.apply(hidden[0])
inter.name = 'inter_bis_%d'%i
lstm = LSTM(dim=p['dim'], activation=config.activation_function,
name="lstm_rec_%d"%i)
bricks.append(lstm)
new_hidden, new_cells = lstm.apply(inter,
states=init_state,
cells=init_cell)
states.append((init_state, new_hidden[-1, :, :]))
states.append((init_cell, new_cells[-1, :, :]))
if 'xreg' in p and p['xreg'] is not None:
n, s, w1, w2, w3, w4 = p['xreg']
cost_x1 = w1 * ((new_hidden.mean(axis=2) - s)**2).mean()
cost_x2 = w2 * ((new_hidden.mean(axis=(0,1)) - s)**2).mean()
cost_x3 = -w3 * abs(new_hidden - s).mean()
cost_x4 = w4 * abs(new_hidden[:-1,:,:]-new_hidden[1:,:,:]).mean()
cost_x1.name = 'cost_x1_%d'%i
cost_x2.name = 'cost_x2_%d'%i
cost_x3.name = 'cost_x3_%d'%i
cost_x4.name = 'cost_x4_%d'%i
costs_xreg += [cost_x1, cost_x2, cost_x3, cost_x4]
dims.append(p['dim'])
hidden.append(new_hidden)
for i, (u, v) in enumerate(states):
print "**** state", i, u.dtype, v.dtype
hidden = [s.dimshuffle(1, 0, 2) for s in hidden]
# Construct output from hidden states
out = None
layers = zip(dims, hidden)[1:]
if not config.h2o_all:
layers = [layers[-1]]
for i, (dim, state) in enumerate(layers):
top_linear = Linear(input_dim=dim, output_dim=config.io_dim,
name='top_linear_%d'%i)
bricks.append(top_linear)
out_i = top_linear.apply(state)
print "**** out", i, out_i.dtype
out = out_i if out is None else out + out_i
out.name = 'out_part_%d'%i
# Do prediction and calculate cost
pred = out.argmax(axis=2).astype('int32')
print "**** inp", inp.dtype
print "**** out", out.dtype
print "**** pred", pred.dtype
cost0 = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
config.io_dim))).mean()
cost0.name = 'cost0'
error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).astype(theano.config.floatX).mean()
print "**** cost0", cost0.dtype
print "**** error_rate", error_rate.dtype
costs = [cost0] + costs_xreg
cost = sum(costs)
# Initialize all bricks
for brick in bricks:
brick.weights_init = IsotropicGaussian(0.1)
brick.biases_init = Constant(0.)
brick.initialize()
# Apply noise and dropout
cg = ComputationGraph([cost, error_rate] + costs)
if config.w_noise_std > 0:
noise_vars = VariableFilter(roles=[WEIGHT])(cg)
cg = apply_noise(cg, noise_vars, config.w_noise_std)
if config.i_dropout > 0:
cg = apply_dropout(cg, hidden[1:], config.i_dropout)
[cost_reg, error_rate_reg] = cg.outputs[:2]
costs_reg = cg.outputs[2:]
print "**** cost_reg", cost_reg.dtype
print "**** error_rate_reg", error_rate_reg.dtype
# add l1 regularization
if config.l1_reg > 0:
l1pen = sum(abs(st).mean() for st in hidden[1:])
cost_reg = cost_reg + config.l1_reg * l1pen
if config.l1_reg_weight > 0:
l1pen_w = sum(abs(w).mean() for w in VariableFilter(roles=[WEIGHT])(cg))
cost_reg = cost_reg + config.l1_reg_weight * l1pen_w
cost_reg += 1e-10 # so that it is not the same Theano variable as cost
error_rate_reg += 1e-10
# put stuff into self that is usefull for training or extensions
self.sgd_cost = cost_reg
cost.name = 'cost'
cost_reg.name = 'cost_reg'
error_rate.name = 'error_rate'
error_rate_reg.name = 'error_rate_reg'
self.monitor_vars = [[cost_reg],
costs_reg,
[error_rate_reg]]
self.out = out
self.pred = pred
self.states = states
# vim: set sts=4 ts=4 sw=4 tw=0 et :
|