summaryrefslogtreecommitdiff
path: root/model/condlstm.py
blob: 26d95820039a3e8dc78033aca4a54eb9d3cb4cc4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import theano
from theano import tensor
import numpy

from blocks.bricks import Softmax, Linear
from blocks.bricks.recurrent import recurrent, LSTM

from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout


class RstLSTM(LSTM):
    @recurrent(sequences=['inputs', 'run_mask', 'rst_in_mask', 'rst_out_mask'],
               states=['states', 'cells'],
               contexts=[], outputs=['states', 'cells', 'outputs'])
    def apply_cond(self, inputs, states, cells, run_mask=None, rst_in_mask=None, rst_out_mask=None):
        init_states, init_cells = self.initial_states(states.shape[0])

        if rst_in_mask:
            states = tensor.switch(rst_in_mask[:, None], init_states, states)
            cells = tensor.switch(rst_in_mask[:, None], init_cells, cells)

        states, cells = self.apply(iterate=False,
                                   inputs=inputs, states=states, cells=cells,
                                   mask=run_mask)
        outputs = states

        if rst_out_mask:
            states = tensor.switch(rst_out_mask[:, None], init_states, states)
            cells = tensor.switch(rst_out_mask[:, None], init_cells, cells)

        return states, cells, outputs
            

def compare_matrix(inp, chars):
    chars = numpy.array(map(ord, chars), dtype='int8')
    assert(inp.ndim == 2)
    return tensor.eq(inp[:, :, None], chars[None, None, :]).sum(axis=2).astype(theano.config.floatX)

class Model():
    def __init__(self, config):
        inp = tensor.imatrix('bytes')

        in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int32').reshape((1, 1, config.io_dim)),
                              inp[:, :, None]).astype(theano.config.floatX)
        in_onehot.name = 'in_onehot'

        hidden_dim = sum(p['dim'] for p in config.layers)
        recvalues = tensor.concatenate([in_onehot.dimshuffle(1, 0, 2),
                            tensor.zeros((inp.shape[1], inp.shape[0], hidden_dim))],
                        axis=2)
  
        # Construct hidden states
        indim = config.io_dim
        bricks = []
        states = []
        for i in xrange(1, len(config.layers)+1):
            p = config.layers[i-1]

            init_state = theano.shared(numpy.zeros((config.num_seqs, p['dim'])).astype(theano.config.floatX),
                                       name='st0_%d'%i)
            init_cell = theano.shared(numpy.zeros((config.num_seqs, p['dim'])).astype(theano.config.floatX),
                                       name='cell0_%d'%i)

            linear = Linear(input_dim=indim, output_dim=4*p['dim'],
                            name="lstm_in_%d"%i)
            bricks.append(linear)
            inter = linear.apply(recvalues[:, :, :indim])

            lstm = RstLSTM(dim=p['dim'], activation=config.activation_function,
                        name="lstm_rec_%d"%i)
            bricks.append(lstm)

            run_mask = None
            if 'run_on' in p:
                run_mask = compare_matrix(inp.T, p['run_on'])

            rst_in_mask = None
            if 'reset_before' in p:
                rst_in_mask = compare_matrix(inp.T, p['reset_before'])

            rst_out_mask = None
            if 'reset_after' in p:
                rst_out_mask = compare_matrix(inp.T, p['reset_after'])

            new_hidden, new_cells, rec_out = \
                        lstm.apply_cond(inputs=inter,
                                        states=init_state, cells=init_cell,
                                        run_mask=run_mask,
                                        rst_in_mask=rst_in_mask, rst_out_mask=rst_out_mask)
            states.append((init_state, new_hidden[-1, :, :]))
            states.append((init_cell, new_cells[-1, :, :]))

            indim2 = indim + p['dim']
            recvalues = tensor.set_subtensor(recvalues[:, :, indim:indim2],
                                             rec_out)
            indim = indim2


        print "**** recvalues", recvalues.dtype
        for i, (u, v) in enumerate(states):
            print "****     state", i, u.dtype, v.dtype

        recvalues = recvalues.dimshuffle(1, 0, 2)

        # Construct output from hidden states
        top_linear = Linear(input_dim=indim, output_dim=config.io_dim,
                            name="top_linear")
        bricks.append(top_linear)
        out = top_linear.apply(recvalues)
        out.name = 'out'

        # Do prediction and calculate cost
        pred = out.argmax(axis=2).astype('int32')

        print "****         inp", inp.dtype
        print "****         out", out.dtype
        print "****         pred", pred.dtype
        cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
                                                   out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
                                                                           config.io_dim))).mean()
        cost.name = 'cost'
        error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).astype(theano.config.floatX).mean()
        print "****         cost", cost.dtype
        print "****         error_rate", error_rate.dtype

        # Initialize all bricks
        for brick in bricks:
            brick.weights_init = config.weights_init
            brick.biases_init = config.biases_init
            brick.initialize()

        # Apply noise and dropout
        cg = ComputationGraph([cost, error_rate])
        if config.w_noise_std > 0:
            noise_vars = VariableFilter(roles=[WEIGHT])(cg)
            cg = apply_noise(cg, noise_vars, config.w_noise_std)
        if config.i_dropout > 0:
            cg = apply_dropout(cg, hidden[1:], config.i_dropout)
        [cost_reg, error_rate_reg] = cg.outputs
        print "****         cost_reg", cost_reg.dtype
        print "****         error_rate_reg", error_rate_reg.dtype

        # add l1 regularization
        if config.l1_reg > 0:
            l1pen = sum(abs(st).mean() for st in hidden[1:])
            cost_reg = cost_reg + config.l1_reg * l1pen
        if config.l1_reg_weight > 0:
            l1pen_w = sum(abs(w).mean() for w in VariableFilter(roles=[WEIGHT])(cg))
            cost_reg = cost_reg + config.l1_reg_weight * l1pen_w

        cost_reg += 1e-10           # so that it is not the same Theano variable as cost
        error_rate_reg += 1e-10

        # put stuff into self that is usefull for training or extensions
        self.sgd_cost = cost_reg

        cost.name = 'cost'
        cost_reg.name = 'cost_reg'
        error_rate.name = 'error_rate'
        error_rate_reg.name = 'error_rate_reg'
        self.monitor_vars = [[cost],
                             [cost_reg],
                             [error_rate_reg]]

        self.out = out
        self.pred = pred

        self.states = states


#  vim: set sts=4 ts=4 sw=4 tw=0 et :