1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
import theano
from theano import tensor
import numpy
from theano.tensor.shared_randomstreams import RandomStreams
from blocks.algorithms import Momentum, AdaDelta, RMSProp
from blocks.bricks import Tanh, Softmax, Linear, MLP, Initializable
from blocks.bricks.lookup import LookupTable
from blocks.bricks.recurrent import LSTM, BaseRecurrent, recurrent
from blocks.initialization import IsotropicGaussian, Constant
from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
rng = RandomStreams()
# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
# divided in chunks of lengh 'seq_div_size'
num_seqs = 50
seq_len = 2000
seq_div_size = 100
io_dim = 256
# Model structure
hidden_dims = [512, 512, 512, 512, 512]
activation_function = Tanh()
cond_cert = [0.5, 0.5, 0.5, 0.5]
block_prob = [0.1, 0.1, 0.1, 0.1]
# Regularization
w_noise_std = 0.02
# Step rule
step_rule = 'adadelta'
learning_rate = 0.1
momentum = 0.9
param_desc = '%s(x%sp%s)-n%s-%dx%d(%d)-%s' % (
repr(hidden_dims), repr(cond_cert), repr(block_prob),
repr(w_noise_std),
num_seqs, seq_len, seq_div_size,
step_rule
)
save_freq = 5
on_irc = False
# parameters for sample generation
sample_len = 200
sample_temperature = 0.7 #0.5
sample_freq = 1
if step_rule == 'rmsprop':
step_rule = RMSProp()
elif step_rule == 'adadelta':
step_rule = AdaDelta()
elif step_rule == 'momentum':
step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
else:
assert(False)
class CCHLSTM(BaseRecurrent, Initializable):
def __init__(self, io_dim, hidden_dims, cond_cert, activation=None, **kwargs):
super(CCHLSTM, self).__init__(**kwargs)
self.cond_cert = cond_cert
self.io_dim = io_dim
self.hidden_dims = hidden_dims
self.children = []
self.layers = []
self.softmax = Softmax()
self.children.append(self.softmax)
for i, d in enumerate(hidden_dims):
i0 = LookupTable(length=io_dim,
dim=4*d,
name='i0-%d'%i)
self.children.append(i0)
if i > 0:
i1 = Linear(input_dim=hidden_dims[i-1],
output_dim=4*d,
name='i1-%d'%i)
self.children.append(i1)
else:
i1 = None
lstm = LSTM(dim=d, activation=activation,
name='LSTM-%d'%i)
self.children.append(lstm)
o = Linear(input_dim=d,
output_dim=io_dim,
name='o-%d'%i)
self.children.append(o)
self.layers.append((i0, i1, lstm, o))
@recurrent(contexts=[])
def apply(self, inputs, **kwargs):
l0i, _, l0l, l0o = self.layers[0]
l0iv = l0i.apply(inputs)
new_states0, new_cells0 = l0l.apply(states=kwargs['states0'],
cells=kwargs['cells0'],
inputs=l0iv,
iterate=False)
l0ov = l0o.apply(new_states0)
pos = l0ov
ps = new_states0
passnext = tensor.ones((inputs.shape[0],))
out_sc = [new_states0, new_cells0, passnext]
for i, (cch, (i0, i1, l, o)) in enumerate(zip(self.cond_cert, self.layers[1:])):
pop = self.softmax.apply(pos)
best = pop.max(axis=1)
passnext = passnext * tensor.le(best, cch) * kwargs['pass%d'%i]
i0v = i0.apply(inputs)
i1v = i1.apply(ps)
prev_states = kwargs['states%d'%i]
prev_cells = kwargs['cells%d'%i]
new_states, new_cells = l.apply(inputs=i0v + i1v,
states=prev_states,
cells=prev_cells,
iterate=False)
new_states = tensor.switch(passnext[:, None], new_states, prev_states)
new_cells = tensor.switch(passnext[:, None], new_cells, prev_cells)
out_sc += [new_states, new_cells, passnext]
ov = o.apply(new_states)
pos = tensor.switch(passnext[:, None], pos + ov, pos)
ps = new_states
return [pos] + out_sc
def get_dim(self, name):
dims = {'pred': self.io_dim}
for i, d in enumerate(self.hidden_dims):
dims['states%d'%i] = dims['cells%d'%i] = d
if name in dims:
return dims[name]
return super(CCHLSTM, self).get_dim(name)
@apply.property('sequences')
def apply_sequences(self):
return ['inputs'] + ['pass%d'%i for i in range(len(self.hidden_dims)-1)]
@apply.property('states')
def apply_states(self):
ret = []
for i in range(len(self.hidden_dims)):
ret += ['states%d'%i, 'cells%d'%i]
return ret
@apply.property('outputs')
def apply_outputs(self):
ret = ['pred']
for i in range(len(self.hidden_dims)):
ret += ['states%d'%i, 'cells%d'%i, 'active%d'%i]
return ret
class Model():
def __init__(self):
inp = tensor.lmatrix('bytes')
# Make state vars
state_vars = {}
for i, d in enumerate(hidden_dims):
state_vars['states%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
.astype(theano.config.floatX),
name='states%d'%i)
state_vars['cells%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
.astype(theano.config.floatX),
name='cells%d'%i)
# Construct brick
cchlstm = CCHLSTM(io_dim=io_dim,
hidden_dims=hidden_dims,
cond_cert=cond_cert,
activation=activation_function)
# Random pass
passdict = {}
for i, p in enumerate(block_prob):
passdict['pass%d'%i] = rng.binomial(size=(inp.shape[1], inp.shape[0]), p=1-p)
# Apply it
outs = cchlstm.apply(inputs=inp.dimshuffle(1, 0),
**dict(state_vars.items() + passdict.items()))
states = []
active_prop = []
for i in range(len(hidden_dims)):
states.append((state_vars['states%d'%i], outs[3*i+1][-1, :, :]))
states.append((state_vars['cells%d'%i], outs[3*i+2][-1, :, :]))
active_prop.append(outs[3*i+3].mean())
active_prop[-1].name = 'active_prop_%d'%i
out = outs[0].dimshuffle(1, 0, 2)
# Do prediction and calculate cost
pred = out.argmax(axis=2)
cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
io_dim)))
error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
# Initialize all bricks
for brick in [cchlstm]:
brick.weights_init = IsotropicGaussian(0.1)
brick.biases_init = Constant(0.)
brick.initialize()
# Apply noise and dropoutvars
cg = ComputationGraph([cost, error_rate])
if w_noise_std > 0:
noise_vars = VariableFilter(roles=[WEIGHT])(cg)
cg = apply_noise(cg, noise_vars, w_noise_std)
[cost_reg, error_rate_reg] = cg.outputs
self.sgd_cost = cost_reg
self.monitor_vars = [[cost, cost_reg],
[error_rate, error_rate_reg],
active_prop]
cost.name = 'cost'
cost_reg.name = 'cost_reg'
error_rate.name = 'error_rate'
error_rate_reg.name = 'error_rate_reg'
self.out = out
self.pred = pred
self.states = states
|