summaryrefslogtreecommitdiff
path: root/irc.py
blob: f8ca125f6d2e651fc1cdbf8979761befd733efb4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python2

import logging
import sys
import importlib

import theano

from blocks.extensions import Printing, SimpleExtension, FinishAfter
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring

from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent

try:
    from blocks.extras.extensions.plot import Plot
    plot_avail = False
except ImportError:
    plot_avail = False


import datastream
from paramsaveload import SaveLoadParams
from gentext import GenText
from ircext import IRCClientExt

logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)

sys.setrecursionlimit(500000)


class ResetStates(SimpleExtension):
    def __init__(self, state_vars, **kwargs):
        super(ResetStates, self).__init__(**kwargs)

        self.f = theano.function(
            inputs=[], outputs=[],
            updates=[(v, v.zeros_like()) for v in state_vars])

    def do(self, which_callback, *args):
        self.f()

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0]
        sys.exit(1)
    model_name = sys.argv[-1]
    config = importlib.import_module('%s' % model_name)


    # Build datastream
    train_stream = datastream.setup_datastream('data/logcompil.txt',
                                               config.num_seqs,
                                               config.seq_len,
                                               config.seq_div_size)

    # Build model
    m = config.Model()
    m.pred.name = 'pred'

    # Train the model
    saveloc = 'model_data/%s-%s' % (model_name, config.param_desc)
    train_model(m, train_stream, dump_path=saveloc)


    # Define the model
    model = Model(m.sgd_cost)

    # IRC mode : just load the parameters and run an IRC server
    if '--irc' in sys.argv:
        try:
            extensions.append(FinishAfter(before_training=True, after_n_batches=1))
            print "Initializing main loop"
            main_loop.run()
            print "Jumping into IRC"
            irc.run_forever()
        except KeyboardInterrupt:
            pass
        sys.exit(0)

    # Train the model

    cg = ComputationGraph(m.sgd_cost)
    algorithm = GradientDescent(cost=m.sgd_cost,
                                step_rule=config.step_rule,
                                parameters=cg.parameters)

    algorithm.add_updates(m.states)

    monitor_vars = [v for p in m.monitor_vars for v in p]
    extensions = [
            TrainingDataMonitoring(
                monitor_vars,
                prefix='train', every_n_epochs=1),
            Printing(every_n_epochs=1, after_epoch=False),

            ResetStates([v for v, _ in m.states], after_epoch=True)
    ]
    if plot_avail:
        plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars]
        extensions.append(
            Plot(document='text_'+model_name,
                 channels=plot_channels,
                 server_url='http://localhost:5006',
                 every_n_epochs=1, after_epoch=False)
        )
    if config.save_freq is not None and dump_path is not None:
        extensions.append(
            SaveLoadParams(path=dump_path+'.pkl',
                           model=model,
                           before_training=True,
                           after_training=True,
                           after_epoch=False,
                           every_n_epochs=config.save_freq)
        )
    if config.sample_freq is not None:
        extensions.append(
            GenText(m, '\nalex\ttu crois ?\n',
                    config.sample_len, config.sample_temperature,
                    every_n_epochs=config.sample_freq,
                    after_epoch=False, before_training=True)
        )
    if config.on_irc:
        irc = IRCClientExt(m, config.sample_temperature,
                           server='clipper.ens.fr',
                           port=6667,
                           nick='frigo',
                           channels=['#frigotest', '#courssysteme'],
                           after_batch=True)
        irc.do('before_training')
        extensions.append(irc)

    if config.on_irc:
        irc = IRCClientExt(m, config.sample_temperature,
                           server='clipper.ens.fr',
                           port=6667,
                           nick='frigo',
                           channels=['#frigotest', '#courssysteme'],
                           after_batch=True)
        irc.do('before_training')
        extensions.append(irc)

	main_loop = MainLoop(
		model=model,
		data_stream=train_stream,
		algorithm=algorithm,
		extensions=extensions
	)
	main_loop.run()

    # IRC mode : just load the parameters and run an IRC server
    if '--irc' in sys.argv:
        try:
            extensions.append(FinishAfter(before_training=True, after_n_batches=1))
            print "Initializing main loop"
            main_loop.run()
            print "Jumping into IRC"
            irc.run_forever()
        except KeyboardInterrupt:
            pass
        sys.exit(0)








#  vim: set sts=4 ts=4 sw=4 tw=0 et :