diff options
Diffstat (limited to 'train.py')
-rwxr-xr-x | train.py | 64 |
1 files changed, 39 insertions, 25 deletions
@@ -5,14 +5,17 @@ import numpy import sys import importlib +from contextlib import closing + import theano from theano import tensor +from theano.tensor.shared_randomstreams import RandomStreams -from blocks.dump import load_parameter_values -from blocks.dump import MainLoopDumpManager +from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER from blocks.extensions import Printing, SimpleExtension from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring -from blocks.extensions.plot import Plot +from blocks.extras.extensions.plot import Plot +from blocks.extensions.saveload import Checkpoint, Load from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model @@ -37,10 +40,14 @@ class GenText(SimpleExtension): self.init_text = init_text self.max_bytes = max_bytes - cg = ComputationGraph([model.pred]) + + out = model.out[:, -1, :] / numpy.float32(config.sample_temperature) + prob = tensor.nnet.softmax(out) + + cg = ComputationGraph([prob]) assert(len(cg.inputs) == 1) assert(cg.inputs[0].name == 'bytes') - self.f = theano.function(inputs=cg.inputs, outputs=[model.pred]) + self.f = theano.function(inputs=cg.inputs, outputs=[prob]) super(GenText, self).__init__(**kwargs) @@ -49,22 +56,21 @@ class GenText(SimpleExtension): dtype='int16')[None, :].repeat(axis=0, repeats=config.num_seqs) while v.shape[1] < self.max_bytes: - pred, = self.f(v) - v = numpy.concatenate([v, pred[:, -1:]], axis=1) + prob, = self.f(v) + prob = prob / 1.00001 + pred = numpy.zeros((prob.shape[0],), dtype='int16') + for i in range(prob.shape[0]): + pred[i] = numpy.random.multinomial(1, prob[i, :]).nonzero()[0][0] + v = numpy.concatenate([v, pred[:, None]], axis=1) for i in range(v.shape[0]): print "Sample:", ''.join([chr(int(v[i, j])) for j in range(v.shape[1])]) -def train_model(m, train_stream, load_location=None, save_location=None): +def train_model(m, train_stream, dump_path=None): # Define the model model = Model(m.cost) - # Load the parameters from a dumped model - if load_location is not None: - logger.info('Loading parameters...') - model.set_param_values(load_parameter_values(load_location)) - cg = ComputationGraph(m.cost_reg) algorithm = GradientDescent(cost=m.cost_reg, step_rule=config.step_rule, @@ -72,11 +78,26 @@ def train_model(m, train_stream, load_location=None, save_location=None): algorithm.add_updates(m.updates) + # Load the parameters from a dumped model + if dump_path is not None: + try: + logger.info('Loading parameters...') + with closing(numpy.load(dump_path)) as source: + param_values = {'/' + name.replace(BRICK_DELIMITER, '/'): source[name] + for name in source.keys() + if name != 'pkl' and not 'None' in name} + model.set_param_values(param_values) + except IOError: + pass + main_loop = MainLoop( model=model, data_stream=train_stream, algorithm=algorithm, extensions=[ + Checkpoint(path=dump_path, + after_epoch=False, every_n_epochs=config.save_freq), + TrainingDataMonitoring( [m.cost_reg, m.error_rate_reg, m.cost, m.error_rate], prefix='train', every_n_epochs=1), @@ -84,19 +105,14 @@ def train_model(m, train_stream, load_location=None, save_location=None): Plot(document='tr_'+model_name+'_'+config.param_desc, channels=[['train_cost', 'train_cost_reg'], ['train_error_rate', 'train_error_rate_reg']], + server_url='http://eos21:4201/', every_n_epochs=1, after_epoch=False), - GenText(m, '\t', 20, every_n_epochs=1, after_epoch=False) + + GenText(m, ' ', config.sample_len, every_n_epochs=1, after_epoch=False) ] ) main_loop.run() - # Save the main loop - if save_location is not None: - logger.info('Saving the main loop...') - dump_manager = MainLoopDumpManager(save_location) - dump_manager.dump(main_loop) - logger.info('Saved') - if __name__ == "__main__": # Build datastream @@ -114,8 +130,6 @@ if __name__ == "__main__": m.pred.name = 'pred' # Train the model - saveloc = 'model_data/%s' % model_name - train_model(m, train_stream, - load_location=None, - save_location=None) + saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) + train_model(m, train_stream, dump_path=saveloc) |