1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#!/usr/bin/env python
import logging
import numpy
import sys
import importlib
import theano
from theano import tensor
from blocks.dump import load_parameter_values
from blocks.dump import MainLoopDumpManager
from blocks.extensions import Printing, SimpleExtension
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring
from blocks.extensions.plot import Plot
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent
import datastream
# from apply_model import Apply
logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if len(sys.argv) != 2:
print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
sys.exit(1)
model_name = sys.argv[1]
config = importlib.import_module('%s' % model_name)
class GenText(SimpleExtension):
def __init__(self, model, init_text, max_bytes, **kwargs):
self.init_text = init_text
self.max_bytes = max_bytes
cg = ComputationGraph([model.pred])
assert(len(cg.inputs) == 1)
assert(cg.inputs[0].name == 'bytes')
self.f = theano.function(inputs=cg.inputs, outputs=[model.pred])
super(GenText, self).__init__(**kwargs)
def do(self, which_callback, *args):
v = numpy.array([ord(i) for i in self.init_text],
dtype='int16')[None, :].repeat(axis=0, repeats=config.num_seqs)
while v.shape[1] < self.max_bytes:
pred, = self.f(v)
v = numpy.concatenate([v, pred[:, -1:]], axis=1)
for i in range(v.shape[0]):
print "Sample:", ''.join([chr(int(v[i, j])) for j in range(v.shape[1])])
def train_model(m, train_stream, load_location=None, save_location=None):
# Define the model
model = Model(m.cost)
# Load the parameters from a dumped model
if load_location is not None:
logger.info('Loading parameters...')
model.set_param_values(load_parameter_values(load_location))
cg = ComputationGraph(m.cost_reg)
algorithm = GradientDescent(cost=m.cost_reg,
step_rule=config.step_rule,
params=cg.parameters)
algorithm.add_updates(m.updates)
main_loop = MainLoop(
model=model,
data_stream=train_stream,
algorithm=algorithm,
extensions=[
TrainingDataMonitoring(
[m.cost_reg, m.error_rate_reg, m.cost, m.error_rate],
prefix='train', every_n_epochs=1),
Printing(every_n_epochs=1, after_epoch=False),
Plot(document='tr_'+model_name+'_'+config.param_desc,
channels=[['train_cost', 'train_cost_reg'],
['train_error_rate', 'train_error_rate_reg']],
every_n_epochs=1, after_epoch=False),
GenText(m, '\t', 20, every_n_epochs=1, after_epoch=False)
]
)
main_loop.run()
# Save the main loop
if save_location is not None:
logger.info('Saving the main loop...')
dump_manager = MainLoopDumpManager(save_location)
dump_manager.dump(main_loop)
logger.info('Saved')
if __name__ == "__main__":
# Build datastream
train_stream = datastream.setup_datastream('data/logcompil.txt',
config.num_seqs,
config.seq_len,
config.seq_div_size)
# Build model
m = config.Model()
m.cost.name = 'cost'
m.cost_reg.name = 'cost_reg'
m.error_rate.name = 'error_rate'
m.error_rate_reg.name = 'error_rate_reg'
m.pred.name = 'pred'
# Train the model
saveloc = 'model_data/%s' % model_name
train_model(m, train_stream,
load_location=None,
save_location=None)
|