summaryrefslogtreecommitdiff
path: root/model/dgsrnn.py
diff options
context:
space:
mode:
Diffstat (limited to 'model/dgsrnn.py')
-rw-r--r--model/dgsrnn.py205
1 files changed, 205 insertions, 0 deletions
diff --git a/model/dgsrnn.py b/model/dgsrnn.py
new file mode 100644
index 0000000..d6d93ff
--- /dev/null
+++ b/model/dgsrnn.py
@@ -0,0 +1,205 @@
+import theano
+from theano import tensor
+import numpy
+
+from theano.tensor.shared_randomstreams import RandomStreams
+
+from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
+from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
+from blocks.bricks.base import application, lazy
+from blocks.bricks.recurrent import BaseRecurrent, recurrent
+from blocks.initialization import IsotropicGaussian, Constant
+from blocks.utils import shared_floatx_zeros
+
+from blocks.filter import VariableFilter
+from blocks.roles import WEIGHT, INITIAL_STATE, add_role
+from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+
+rng = RandomStreams()
+
+class TRectifier(Activation):
+ @application(inputs=['input_'], outputs=['output'])
+ def apply(self, input_):
+ return tensor.switch(input_ > 1, input_, 0)
+
+# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
+# divided in chunks of lengh 'seq_div_size'
+num_seqs = 10
+seq_len = 1000
+seq_div_size = 5
+
+io_dim = 256
+
+state_dim = 1024
+activation = Tanh()
+transition_hidden = [1024, 1024]
+transition_hidden_activations = [Rectifier(), Rectifier()]
+
+output_hidden = []
+output_hidden_activations = []
+
+weight_noise_std = 0.05
+
+output_h_dropout = 0.0
+drop_update = 0.0
+
+l1_state = 0.00
+l1_reset = 0.1
+
+step_rule = 'momentum'
+learning_rate = 0.001
+momentum = 0.99
+
+
+param_desc = '%s,t%s,o%s-n%s-d%s,%s-L1:%s,%s-%s' % (
+ repr(state_dim), repr(transition_hidden), repr(output_hidden),
+ repr(weight_noise_std),
+ repr(output_h_dropout), repr(drop_update),
+ repr(l1_state), repr(l1_reset),
+ step_rule
+ )
+
+save_freq = 5
+on_irc = False
+
+# parameters for sample generation
+sample_len = 100
+sample_temperature = 0.7 #0.5
+sample_freq = 1
+
+if step_rule == 'rmsprop':
+ step_rule = RMSProp()
+elif step_rule == 'adadelta':
+ step_rule = AdaDelta()
+elif step_rule == 'momentum':
+ step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
+elif step_rule == 'adam':
+ step_rule = Adam()
+else:
+ assert(False)
+
+
+
+class DGSRNN(BaseRecurrent, Initializable):
+ def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, **kwargs):
+ super(DGSRNN, self).__init__(**kwargs)
+
+ self.input_dim = input_dim
+ self.state_dim = state_dim
+
+ logistic = Logistic()
+
+ self.inter = MLP(dims=[input_dim + state_dim] + transition_h,
+ activations=tr_h_activations,
+ name='inter')
+ self.reset = MLP(dims=[transition_h[-1], state_dim],
+ activations=[logistic],
+ name='reset')
+ self.update = MLP(dims=[transition_h[-1], state_dim],
+ activations=[act],
+ name='update')
+
+ self.children = [self.inter, self.reset, self.update, logistic, act] + tr_h_activations
+
+ # init state
+ self.params = [shared_floatx_zeros((state_dim,), name='init_state')]
+ add_role(self.params[0], INITIAL_STATE)
+
+ def get_dim(self, name):
+ if name == 'state':
+ return self.state_dim
+ return super(GFGRU, self).get_dim(name)
+
+ @recurrent(sequences=['inputs', 'drop_updates_mask'], states=['state'],
+ outputs=['state', 'reset'], contexts=[])
+ def apply(self, inputs=None, drop_updates_mask=None, state=None):
+ inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1))
+ reset_v = self.reset.apply(inter_v)
+ update_v = self.update.apply(inter_v)
+
+ reset_v = reset_v * drop_updates_mask
+
+ new_state = state * (1 - reset_v) + reset_v * update_v
+
+ return new_state, reset_v
+
+ @application
+ def initial_state(self, state_name, batch_size, *args, **kwargs):
+ return tensor.repeat(self.params[0][None, :],
+ repeats=batch_size,
+ axis=0)
+
+
+class Model():
+ def __init__(self):
+ inp = tensor.lmatrix('bytes')
+
+ in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
+ inp[:, :, None])
+ in_onehot.name = 'in_onehot'
+
+ dgsrnn = DGSRNN(input_dim=io_dim,
+ state_dim=state_dim,
+ act=activation,
+ transition_h=transition_hidden,
+ tr_h_activations=transition_hidden_activations,
+ name='dgsrnn')
+
+ prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX),
+ name='state')
+
+ states, resets = dgsrnn.apply(inputs=in_onehot.dimshuffle(1, 0, 2),
+ drop_updates_mask=rng.binomial(size=(inp.shape[1], inp.shape[0], state_dim),
+ p=1-drop_update,
+ dtype=theano.config.floatX),
+ state=prev_state)
+ states = states.dimshuffle(1, 0, 2)
+ resets = resets.dimshuffle(1, 0, 2)
+
+ self.states = [(prev_state, states[:, -1, :])]
+
+ out_mlp = MLP(dims=[state_dim] + output_hidden + [io_dim],
+ activations=output_hidden_activations + [None],
+ name='output_mlp')
+ states_sh = states.reshape((inp.shape[0]*inp.shape[1], state_dim))
+ out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim))
+
+
+ # Do prediction and calculate cost
+ pred = out.argmax(axis=2)
+
+ cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
+ out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
+ io_dim)))
+ error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
+
+ # Initialize all bricks
+ for brick in [dgsrnn, out_mlp]:
+ brick.weights_init = IsotropicGaussian(0.001)
+ brick.biases_init = Constant(0.0)
+ brick.initialize()
+
+ # Apply noise and dropout
+ cg = ComputationGraph([cost, error_rate, states, resets])
+ if weight_noise_std > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, weight_noise_std)
+ if output_h_dropout > 0:
+ dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg)
+ print "Output H dropout on", len(dv), "vars"
+ cg = apply_dropout(cg, dv, output_h_dropout)
+ [cost_reg, error_rate_reg, states, resets] = cg.outputs
+
+ if l1_state > 0:
+ cost_reg = cost_reg + l1_state * abs(states).mean()
+ if l1_reset > 0:
+ cost_reg = cost_reg + l1_reset * abs(resets).mean()
+
+ self.cost = cost
+ self.error_rate = error_rate
+ self.cost_reg = cost_reg
+ self.error_rate_reg = error_rate_reg
+ self.out = out
+ self.pred = pred
+
+