summaryrefslogtreecommitdiff
path: root/gfgru.py
diff options
context:
space:
mode:
Diffstat (limited to 'gfgru.py')
-rw-r--r--gfgru.py294
1 files changed, 0 insertions, 294 deletions
diff --git a/gfgru.py b/gfgru.py
deleted file mode 100644
index 29d4398..0000000
--- a/gfgru.py
+++ /dev/null
@@ -1,294 +0,0 @@
-import theano
-from theano import tensor
-import numpy
-
-from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
-from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
-from blocks.bricks.base import application, lazy
-from blocks.bricks.recurrent import BaseRecurrent, recurrent
-from blocks.initialization import IsotropicGaussian, Constant
-from blocks.utils import shared_floatx_zeros
-
-from blocks.filter import VariableFilter
-from blocks.roles import WEIGHT, INITIAL_STATE, add_role
-from blocks.graph import ComputationGraph, apply_noise, apply_dropout
-
-class TRectifier(Activation):
- @application(inputs=['input_'], outputs=['output'])
- def apply(self, input_):
- return tensor.switch(input_ > 1, input_, 0)
-
-# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
-# divided in chunks of lengh 'seq_div_size'
-num_seqs = 10
-seq_len = 2000
-seq_div_size = 100
-
-io_dim = 256
-
-recurrent_blocks = [
-# (256, Tanh(), [2048], [Rectifier()]),
-# (512, Rectifier(), [1024], [Rectifier()]),
- (512, Tanh(), [1024], [Rectifier()]),
- (512, Tanh(), [1024], [Rectifier()]),
-# (2, Tanh(), [2], [Rectifier()]),
-# (2, Tanh(), [], []),
- ]
-
-control_hidden = [1024]
-control_hidden_activations = [Rectifier()]
-
-output_hidden = [1024]
-output_hidden_activations = [Rectifier()]
-
-weight_noise_std = 0.05
-
-recurrent_h_dropout = 0
-control_h_dropout = 0
-output_h_dropout = 0.5
-
-step_rule = 'adam'
-learning_rate = 0.1
-momentum = 0.99
-
-
-param_desc = '%s,c%s,o%s-n%s-d%s,%s,%s-%s' % (
- repr(map(lambda (a, b, c, d): (a, c), recurrent_blocks)),
- repr(control_hidden), repr(output_hidden),
- repr(weight_noise_std),
- repr(recurrent_h_dropout), repr(control_h_dropout), repr(output_h_dropout),
- step_rule
- )
-
-save_freq = 5
-on_irc = False
-
-# parameters for sample generation
-sample_len = 100
-sample_temperature = 0.7 #0.5
-sample_freq = 1
-
-if step_rule == 'rmsprop':
- step_rule = RMSProp()
-elif step_rule == 'adadelta':
- step_rule = AdaDelta()
-elif step_rule == 'momentum':
- step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
-elif step_rule == 'adam':
- step_rule = Adam()
-else:
- assert(False)
-
-
-
-
-class GFGRU(BaseRecurrent, Initializable):
- def __init__(self, input_dim, recurrent_blocks, control_hidden, control_hidden_activations, **kwargs):
- super(GFGRU, self).__init__(**kwargs)
-
- self.input_dim = input_dim
- self.recurrent_blocks = recurrent_blocks
- self.control_hidden = control_hidden
- self.control_hidden_activations = control_hidden_activations
-
- # setup children
- self.children = control_hidden_activations
- for (_, a, _, b) in recurrent_blocks:
- self.children.append(a)
- for c in b:
- self.children.append(c)
-
- logistic = Logistic()
- self.children.append(logistic)
-
- self.hidden_total_dim = sum(x for (x, _, _, _) in self.recurrent_blocks)
-
- # control block
- self.cblocklen = len(self.recurrent_blocks) + 2
-
- control_idim = self.hidden_total_dim + self.input_dim
- control_odim = len(self.recurrent_blocks) * self.cblocklen
- self.control = MLP(dims=[control_idim] + self.control_hidden + [control_odim],
- activations=self.control_hidden_activations + [logistic],
- name='control')
-
- self.children.append(self.control)
-
- # recurrent blocks
- self.blocks = []
- self.params = []
- for i, (dim, act, hdim, hact) in enumerate(self.recurrent_blocks):
- idim = self.input_dim + self.hidden_total_dim
- if i > 0:
- idim = idim + self.recurrent_blocks[i-1][0]
-
- idims = [idim] + hdim
- if hdim == []:
- inter = Identity()
- else:
- inter = MLP(dims=idims, activations=hact, name='inter%d'%i)
-
- rgate = MLP(dims=[idims[-1], dim], activations=[logistic], name='rgate%d'%i)
- nstate = MLP(dims=[idims[-1], dim], activations=[act], name='nstate%d'%i)
-
- for brick in [inter, rgate, nstate]:
- self.children.append(brick)
- self.blocks.append((inter, rgate, nstate))
-
- # init state zeros
- self.init_states_names = []
- self.init_states_dict = {}
- self.params = []
-
- for i, (dim, _, _, _) in enumerate(self.recurrent_blocks):
- name = 'init_state_%d'%i
- svar = shared_floatx_zeros((dim,), name=name)
- add_role(svar, INITIAL_STATE)
-
- self.init_states_names.append(name)
- self.init_states_dict[name] = svar
- self.params.append(svar)
-
- def get_dim(self, name):
- if name in self.init_states_dict:
- return self.init_states_dict[name].shape.eval()
- return super(GFGRU, self).get_dim(name)
-
- def recurrent_h_dropout_vars(self, cg):
- ret = []
- for (inter, rgate, nstate) in self.blocks:
- ret = ret + VariableFilter(name='input_',
- bricks=inter.linear_transformations + rgate.linear_transformations + nstate.linear_transformations
- )(cg)
- return ret
-
- def control_h_dropout_vars(self, cg):
- return VariableFilter(name='input_', bricks=self.control.linear_transformations)(cg)
-
- @recurrent(sequences=['inputs'], contexts=[])
- def apply(self, inputs=None, **kwargs):
- states = [kwargs[i] for i in self.init_states_names]
- concat_states = tensor.concatenate(states, axis=1)
-
- concat_input_states = tensor.concatenate([inputs, concat_states], axis=1)
-
- control_v = self.control.apply(concat_input_states)
-
- new_states = []
- for i, (inter, rgate, nstate) in enumerate(self.blocks):
- controls = control_v[:, i * self.cblocklen:(i+1) * self.cblocklen]
- r_inputs = tensor.concatenate([s * controls[:, j][:, None] for j, s in enumerate(states)], axis=1)
-
- more_inputs = [inputs]
- if i > 0:
- more_inputs.append(new_states[-1])
- inter_inputs = tensor.concatenate([r_inputs] + more_inputs, axis=1)
-
- inter_v = inter.apply(inter_inputs)
-
- rgate_v = rgate.apply(inter_v)
- nstate_v = nstate.apply(inter_v)
-
- rctl = controls[:, -1][:, None] * rgate_v
- uctl = controls[:, -2][:, None]
- nstate_v = uctl * nstate_v + (1 - rctl) * states[i]
-
- new_states.append(nstate_v)
-
- return new_states
-
- @apply.property('states')
- def apply_states(self):
- return self.init_states_names
-
- @apply.property('outputs')
- def apply_outputs(self):
- return self.init_states_names
-
- @application
- def initial_state(self, state_name, batch_size, *args, **kwargs):
- return tensor.repeat(self.init_states_dict[state_name][None, :],
- repeats=batch_size,
- axis=0)
-
-
-
-class Model():
- def __init__(self):
- inp = tensor.lmatrix('bytes')
-
- in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
- inp[:, :, None])
- in_onehot.name = 'in_onehot'
-
- gfgru = GFGRU(input_dim=io_dim,
- recurrent_blocks=recurrent_blocks,
- control_hidden=control_hidden,
- control_hidden_activations=control_hidden_activations)
-
- hidden_total_dim = sum(x for (x, _, _, _) in recurrent_blocks)
-
- prev_states_dict = {}
- for i, (dim, _, _, _) in enumerate(recurrent_blocks):
- prev_state = theano.shared(numpy.zeros((num_seqs, dim)).astype(theano.config.floatX),
- name='states_save')
- prev_states_dict['init_state_%d'%i] = prev_state
-
- states = [x.dimshuffle(1, 0, 2) for x in gfgru.apply(in_onehot.dimshuffle(1, 0, 2), **prev_states_dict)]
-
- self.states = []
- for i, _ in enumerate(recurrent_blocks):
- self.states.append((prev_states_dict['init_state_%d'%i], states[i][:, -1, :]))
-
- states_concat = tensor.concatenate(states, axis=2)
-
- out_mlp = MLP(dims=[hidden_total_dim] + output_hidden + [io_dim],
- activations=output_hidden_activations + [None],
- name='output_mlp')
- states_sh = states_concat.reshape((inp.shape[0]*inp.shape[1], hidden_total_dim))
- out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim))
-
-
-
- # Do prediction and calculate cost
- pred = out.argmax(axis=2)
-
- cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
- out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
- io_dim)))
- error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
-
- # Initialize all bricks
- for brick in [gfgru, out_mlp]:
- brick.weights_init = IsotropicGaussian(0.01)
- brick.biases_init = Constant(0.001)
- brick.initialize()
-
- # Apply noise and dropout
- cg = ComputationGraph([cost, error_rate])
- if weight_noise_std > 0:
- noise_vars = VariableFilter(roles=[WEIGHT])(cg)
- cg = apply_noise(cg, noise_vars, weight_noise_std)
- if recurrent_h_dropout > 0:
- dv = gfgru.recurrent_h_dropout_vars(cg)
- print "Recurrent H dropout on", len(dv), "vars"
- cg = apply_dropout(cg, dv, recurrent_h_dropout)
- if control_h_dropout > 0:
- dv = gfgru.control_h_dropout_vars(cg)
- print "Control H dropout on", len(dv), "vars"
- cg = apply_dropout(cg, dv, control_h_dropout)
- if output_h_dropout > 0:
- dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg)
- print "Output H dropout on", len(dv), "vars"
- cg = apply_dropout(cg, dv, output_h_dropout)
- [cost_reg, error_rate_reg] = cg.outputs
-
-
- self.cost = cost
- self.error_rate = error_rate
- self.cost_reg = cost_reg
- self.error_rate_reg = error_rate_reg
- self.out = out
- self.pred = pred
-
-