diff options
Diffstat (limited to 'dgsrnn.py')
-rw-r--r-- | dgsrnn.py | 199 |
1 files changed, 199 insertions, 0 deletions
diff --git a/dgsrnn.py b/dgsrnn.py new file mode 100644 index 0000000..2965364 --- /dev/null +++ b/dgsrnn.py @@ -0,0 +1,199 @@ +import theano +from theano import tensor +import numpy + +from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam +from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity +from blocks.bricks.base import application, lazy +from blocks.bricks.recurrent import BaseRecurrent, recurrent +from blocks.initialization import IsotropicGaussian, Constant +from blocks.utils import shared_floatx_zeros + +from blocks.filter import VariableFilter +from blocks.roles import WEIGHT, INITIAL_STATE, add_role +from blocks.graph import ComputationGraph, apply_noise, apply_dropout + +class TRectifier(Activation): + @application(inputs=['input_'], outputs=['output']) + def apply(self, input_): + return tensor.switch(input_ > 1, input_, 0) + +# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' +# divided in chunks of lengh 'seq_div_size' +num_seqs = 10 +seq_len = 2000 +seq_div_size = 100 + +io_dim = 256 + +state_dim = 1024 +activation = Tanh() +transition_hidden = [1024, 1024] +transition_hidden_activations = [Tanh(), Tanh()] + +max_reset = 0.8 + +output_hidden = [] +output_hidden_activations = [] + +weight_noise_std = 0.05 + +output_h_dropout = 0.0 + +l1_state = 0.1 +l1_reset = 1 + +step_rule = 'adam' +learning_rate = 0.1 +momentum = 0.99 + + +param_desc = '%s,t%s,o%s,mr%s-n%s-d%s-L1:%s,%s-%s' % ( + repr(state_dim), repr(transition_hidden), repr(output_hidden), repr(max_reset), + repr(weight_noise_std), + repr(output_h_dropout), + repr(l1_state), repr(l1_reset), + step_rule + ) + +save_freq = 5 +on_irc = False + +# parameters for sample generation +sample_len = 100 +sample_temperature = 0.7 #0.5 +sample_freq = 1 + +if step_rule == 'rmsprop': + step_rule = RMSProp() +elif step_rule == 'adadelta': + step_rule = AdaDelta() +elif step_rule == 'momentum': + step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) +elif step_rule == 'adam': + step_rule = Adam() +else: + assert(False) + + + +class DGSRNN(BaseRecurrent, Initializable): + def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, max_reset, **kwargs): + super(DGSRNN, self).__init__(**kwargs) + + self.input_dim = input_dim + self.state_dim = state_dim + self.max_reset = max_reset + + self.inter = MLP(dims=[input_dim + state_dim] + transition_h, + activations=tr_h_activations, + name='inter') + self.reset = MLP(dims=[transition_h[-1], state_dim], + activations=[Logistic()], + name='reset') + self.update = MLP(dims=[transition_h[-1], state_dim], + activations=[act], + name='update') + + self.children = [self.inter, self.reset, self.update] + + # init state + self.params = [shared_floatx_zeros((state_dim,), name='init_state')] + add_role(self.params[0], INITIAL_STATE) + + def get_dim(self, name): + if name == 'state': + return self.state_dim + return super(GFGRU, self).get_dim(name) + + @recurrent(sequences=['inputs'], states=['state'], + outputs=['state', 'reset'], contexts=[]) + def apply(self, inputs=None, state=None): + + inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1)) + reset_v = self.reset.apply(inter_v) + update_v = self.update.apply(inter_v) + + new_state = state * (1 - max_reset * reset_v) + update_v + + return new_state, reset_v + + + @application + def initial_state(self, state_name, batch_size, *args, **kwargs): + return tensor.repeat(self.params[0][None, :], + repeats=batch_size, + axis=0) + + + +class Model(): + def __init__(self): + inp = tensor.lmatrix('bytes') + + in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)), + inp[:, :, None]) + in_onehot.name = 'in_onehot' + + dgsrnn = DGSRNN(input_dim=io_dim, + state_dim=state_dim, + act=activation, + transition_h=transition_hidden, + tr_h_activations=transition_hidden_activations, + max_reset=max_reset, + name='dgsrnn') + + prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX), + name='state') + + states, resets = dgsrnn.apply(in_onehot.dimshuffle(1, 0, 2), state=prev_state) + states = states.dimshuffle(1, 0, 2) + resets = resets.dimshuffle(1, 0, 2) + + self.states = [(prev_state, states[:, -1, :])] + + out_mlp = MLP(dims=[state_dim] + output_hidden + [io_dim], + activations=output_hidden_activations + [None], + name='output_mlp') + states_sh = states.reshape((inp.shape[0]*inp.shape[1], state_dim)) + out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim)) + + + # Do prediction and calculate cost + pred = out.argmax(axis=2) + + cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(), + out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1), + io_dim))) + error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean() + + # Initialize all bricks + for brick in [dgsrnn, out_mlp]: + brick.weights_init = IsotropicGaussian(0.01) + brick.biases_init = Constant(0.001) + brick.initialize() + + # Apply noise and dropout + cg = ComputationGraph([cost, error_rate]) + if weight_noise_std > 0: + noise_vars = VariableFilter(roles=[WEIGHT])(cg) + cg = apply_noise(cg, noise_vars, weight_noise_std) + if output_h_dropout > 0: + dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg) + print "Output H dropout on", len(dv), "vars" + cg = apply_dropout(cg, dv, output_h_dropout) + [cost_reg, error_rate_reg] = cg.outputs + + if l1_state > 0: + cost_reg = cost_reg + l1_state * abs(states).mean() + if l1_reset > 0: + cost_reg = cost_reg + l1_reset * abs(resets).mean() + + self.cost = cost + self.error_rate = error_rate + self.cost_reg = cost_reg + self.error_rate_reg = error_rate_reg + self.out = out + self.pred = pred + + |