summaryrefslogtreecommitdiff
path: root/dgsrnn.py
diff options
context:
space:
mode:
Diffstat (limited to 'dgsrnn.py')
-rw-r--r--dgsrnn.py205
1 files changed, 0 insertions, 205 deletions
diff --git a/dgsrnn.py b/dgsrnn.py
deleted file mode 100644
index d6d93ff..0000000
--- a/dgsrnn.py
+++ /dev/null
@@ -1,205 +0,0 @@
-import theano
-from theano import tensor
-import numpy
-
-from theano.tensor.shared_randomstreams import RandomStreams
-
-from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
-from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
-from blocks.bricks.base import application, lazy
-from blocks.bricks.recurrent import BaseRecurrent, recurrent
-from blocks.initialization import IsotropicGaussian, Constant
-from blocks.utils import shared_floatx_zeros
-
-from blocks.filter import VariableFilter
-from blocks.roles import WEIGHT, INITIAL_STATE, add_role
-from blocks.graph import ComputationGraph, apply_noise, apply_dropout
-
-rng = RandomStreams()
-
-class TRectifier(Activation):
- @application(inputs=['input_'], outputs=['output'])
- def apply(self, input_):
- return tensor.switch(input_ > 1, input_, 0)
-
-# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
-# divided in chunks of lengh 'seq_div_size'
-num_seqs = 10
-seq_len = 1000
-seq_div_size = 5
-
-io_dim = 256
-
-state_dim = 1024
-activation = Tanh()
-transition_hidden = [1024, 1024]
-transition_hidden_activations = [Rectifier(), Rectifier()]
-
-output_hidden = []
-output_hidden_activations = []
-
-weight_noise_std = 0.05
-
-output_h_dropout = 0.0
-drop_update = 0.0
-
-l1_state = 0.00
-l1_reset = 0.1
-
-step_rule = 'momentum'
-learning_rate = 0.001
-momentum = 0.99
-
-
-param_desc = '%s,t%s,o%s-n%s-d%s,%s-L1:%s,%s-%s' % (
- repr(state_dim), repr(transition_hidden), repr(output_hidden),
- repr(weight_noise_std),
- repr(output_h_dropout), repr(drop_update),
- repr(l1_state), repr(l1_reset),
- step_rule
- )
-
-save_freq = 5
-on_irc = False
-
-# parameters for sample generation
-sample_len = 100
-sample_temperature = 0.7 #0.5
-sample_freq = 1
-
-if step_rule == 'rmsprop':
- step_rule = RMSProp()
-elif step_rule == 'adadelta':
- step_rule = AdaDelta()
-elif step_rule == 'momentum':
- step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
-elif step_rule == 'adam':
- step_rule = Adam()
-else:
- assert(False)
-
-
-
-class DGSRNN(BaseRecurrent, Initializable):
- def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, **kwargs):
- super(DGSRNN, self).__init__(**kwargs)
-
- self.input_dim = input_dim
- self.state_dim = state_dim
-
- logistic = Logistic()
-
- self.inter = MLP(dims=[input_dim + state_dim] + transition_h,
- activations=tr_h_activations,
- name='inter')
- self.reset = MLP(dims=[transition_h[-1], state_dim],
- activations=[logistic],
- name='reset')
- self.update = MLP(dims=[transition_h[-1], state_dim],
- activations=[act],
- name='update')
-
- self.children = [self.inter, self.reset, self.update, logistic, act] + tr_h_activations
-
- # init state
- self.params = [shared_floatx_zeros((state_dim,), name='init_state')]
- add_role(self.params[0], INITIAL_STATE)
-
- def get_dim(self, name):
- if name == 'state':
- return self.state_dim
- return super(GFGRU, self).get_dim(name)
-
- @recurrent(sequences=['inputs', 'drop_updates_mask'], states=['state'],
- outputs=['state', 'reset'], contexts=[])
- def apply(self, inputs=None, drop_updates_mask=None, state=None):
- inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1))
- reset_v = self.reset.apply(inter_v)
- update_v = self.update.apply(inter_v)
-
- reset_v = reset_v * drop_updates_mask
-
- new_state = state * (1 - reset_v) + reset_v * update_v
-
- return new_state, reset_v
-
- @application
- def initial_state(self, state_name, batch_size, *args, **kwargs):
- return tensor.repeat(self.params[0][None, :],
- repeats=batch_size,
- axis=0)
-
-
-class Model():
- def __init__(self):
- inp = tensor.lmatrix('bytes')
-
- in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
- inp[:, :, None])
- in_onehot.name = 'in_onehot'
-
- dgsrnn = DGSRNN(input_dim=io_dim,
- state_dim=state_dim,
- act=activation,
- transition_h=transition_hidden,
- tr_h_activations=transition_hidden_activations,
- name='dgsrnn')
-
- prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX),
- name='state')
-
- states, resets = dgsrnn.apply(inputs=in_onehot.dimshuffle(1, 0, 2),
- drop_updates_mask=rng.binomial(size=(inp.shape[1], inp.shape[0], state_dim),
- p=1-drop_update,
- dtype=theano.config.floatX),
- state=prev_state)
- states = states.dimshuffle(1, 0, 2)
- resets = resets.dimshuffle(1, 0, 2)
-
- self.states = [(prev_state, states[:, -1, :])]
-
- out_mlp = MLP(dims=[state_dim] + output_hidden + [io_dim],
- activations=output_hidden_activations + [None],
- name='output_mlp')
- states_sh = states.reshape((inp.shape[0]*inp.shape[1], state_dim))
- out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim))
-
-
- # Do prediction and calculate cost
- pred = out.argmax(axis=2)
-
- cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
- out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
- io_dim)))
- error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
-
- # Initialize all bricks
- for brick in [dgsrnn, out_mlp]:
- brick.weights_init = IsotropicGaussian(0.001)
- brick.biases_init = Constant(0.0)
- brick.initialize()
-
- # Apply noise and dropout
- cg = ComputationGraph([cost, error_rate, states, resets])
- if weight_noise_std > 0:
- noise_vars = VariableFilter(roles=[WEIGHT])(cg)
- cg = apply_noise(cg, noise_vars, weight_noise_std)
- if output_h_dropout > 0:
- dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg)
- print "Output H dropout on", len(dv), "vars"
- cg = apply_dropout(cg, dv, output_h_dropout)
- [cost_reg, error_rate_reg, states, resets] = cg.outputs
-
- if l1_state > 0:
- cost_reg = cost_reg + l1_state * abs(states).mean()
- if l1_reset > 0:
- cost_reg = cost_reg + l1_reset * abs(resets).mean()
-
- self.cost = cost
- self.error_rate = error_rate
- self.cost_reg = cost_reg
- self.error_rate_reg = error_rate_reg
- self.out = out
- self.pred = pred
-
-