summaryrefslogtreecommitdiff
path: root/cchlstm.py
diff options
context:
space:
mode:
Diffstat (limited to 'cchlstm.py')
-rw-r--r--cchlstm.py40
1 files changed, 27 insertions, 13 deletions
diff --git a/cchlstm.py b/cchlstm.py
index 9ff2016..78c9a1f 100644
--- a/cchlstm.py
+++ b/cchlstm.py
@@ -2,6 +2,8 @@ import theano
from theano import tensor
import numpy
+from theano.tensor.shared_randomstreams import RandomStreams
+
from blocks.algorithms import Momentum, AdaDelta, RMSProp
from blocks.bricks import Tanh, Softmax, Linear, MLP, Initializable
from blocks.bricks.lookup import LookupTable
@@ -12,19 +14,22 @@ from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+rng = RandomStreams()
+
# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
# divided in chunks of lengh 'seq_div_size'
-num_seqs = 10
+num_seqs = 50
seq_len = 2000
-seq_div_size = 200
+seq_div_size = 100
io_dim = 256
# Model structure
-hidden_dims = [256, 256, 256]
+hidden_dims = [512, 512, 512, 512, 512]
activation_function = Tanh()
-cond_cert = [0.5, 0.5]
+cond_cert = [0.5, 0.5, 0.5, 0.5]
+block_prob = [0.1, 0.1, 0.1, 0.1]
# Regularization
w_noise_std = 0.02
@@ -35,8 +40,8 @@ learning_rate = 0.1
momentum = 0.9
-param_desc = '%s(p%s)-n%s-%dx%d(%d)-%s' % (
- repr(hidden_dims), repr(cond_cert),
+param_desc = '%s(x%sp%s)-n%s-%dx%d(%d)-%s' % (
+ repr(hidden_dims), repr(cond_cert), repr(block_prob),
repr(w_noise_std),
num_seqs, seq_len, seq_div_size,
step_rule
@@ -100,7 +105,7 @@ class CCHLSTM(BaseRecurrent, Initializable):
self.layers.append((i0, i1, lstm, o))
- @recurrent(sequences=['inputs'], contexts=[])
+ @recurrent(contexts=[])
def apply(self, inputs, **kwargs):
l0i, _, l0l, l0o = self.layers[0]
@@ -114,13 +119,13 @@ class CCHLSTM(BaseRecurrent, Initializable):
pos = l0ov
ps = new_states0
- passnext = tensor.ones((inputs.shape[0], 1))
+ passnext = tensor.ones((inputs.shape[0],))
out_sc = [new_states0, new_cells0, passnext]
for i, (cch, (i0, i1, l, o)) in enumerate(zip(self.cond_cert, self.layers[1:])):
pop = self.softmax.apply(pos)
best = pop.max(axis=1)
- passnext = passnext * tensor.le(best, cch)[:, None]
+ passnext = passnext * tensor.le(best, cch) * kwargs['pass%d'%i]
i0v = i0.apply(inputs)
i1v = i1.apply(ps)
@@ -131,12 +136,12 @@ class CCHLSTM(BaseRecurrent, Initializable):
states=prev_states,
cells=prev_cells,
iterate=False)
- new_states = tensor.switch(passnext, new_states, prev_states)
- new_cells = tensor.switch(passnext, new_cells, prev_cells)
+ new_states = tensor.switch(passnext[:, None], new_states, prev_states)
+ new_cells = tensor.switch(passnext[:, None], new_cells, prev_cells)
out_sc += [new_states, new_cells, passnext]
ov = o.apply(new_states)
- pos = tensor.switch(passnext, pos + ov, pos)
+ pos = tensor.switch(passnext[:, None], pos + ov, pos)
ps = new_states
return [pos] + out_sc
@@ -149,6 +154,10 @@ class CCHLSTM(BaseRecurrent, Initializable):
return dims[name]
return super(CCHLSTM, self).get_dim(name)
+ @apply.property('sequences')
+ def apply_sequences(self):
+ return ['inputs'] + ['pass%d'%i for i in range(len(self.hidden_dims)-1)]
+
@apply.property('states')
def apply_states(self):
ret = []
@@ -183,9 +192,14 @@ class Model():
cond_cert=cond_cert,
activation=activation_function)
+ # Random pass
+ passdict = {}
+ for i, p in enumerate(block_prob):
+ passdict['pass%d'%i] = rng.binomial(size=(inp.shape[1], inp.shape[0]), p=1-p)
+
# Apply it
outs = cchlstm.apply(inputs=inp.dimshuffle(1, 0),
- **state_vars)
+ **dict(state_vars.items() + passdict.items()))
states = []
active_prop = []
for i in range(len(hidden_dims)):