summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--cchlstm.py234
-rw-r--r--dgsrnn.py33
-rw-r--r--paramsaveload.py4
-rwxr-xr-xtrain.py51
4 files changed, 286 insertions, 36 deletions
diff --git a/cchlstm.py b/cchlstm.py
new file mode 100644
index 0000000..9ff2016
--- /dev/null
+++ b/cchlstm.py
@@ -0,0 +1,234 @@
+import theano
+from theano import tensor
+import numpy
+
+from blocks.algorithms import Momentum, AdaDelta, RMSProp
+from blocks.bricks import Tanh, Softmax, Linear, MLP, Initializable
+from blocks.bricks.lookup import LookupTable
+from blocks.bricks.recurrent import LSTM, BaseRecurrent, recurrent
+from blocks.initialization import IsotropicGaussian, Constant
+
+from blocks.filter import VariableFilter
+from blocks.roles import WEIGHT
+from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+
+# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
+# divided in chunks of lengh 'seq_div_size'
+num_seqs = 10
+seq_len = 2000
+seq_div_size = 200
+
+io_dim = 256
+
+# Model structure
+hidden_dims = [256, 256, 256]
+activation_function = Tanh()
+
+cond_cert = [0.5, 0.5]
+
+# Regularization
+w_noise_std = 0.02
+
+# Step rule
+step_rule = 'adadelta'
+learning_rate = 0.1
+momentum = 0.9
+
+
+param_desc = '%s(p%s)-n%s-%dx%d(%d)-%s' % (
+ repr(hidden_dims), repr(cond_cert),
+ repr(w_noise_std),
+ num_seqs, seq_len, seq_div_size,
+ step_rule
+ )
+
+save_freq = 5
+on_irc = False
+
+# parameters for sample generation
+sample_len = 200
+sample_temperature = 0.7 #0.5
+sample_freq = 1
+
+if step_rule == 'rmsprop':
+ step_rule = RMSProp()
+elif step_rule == 'adadelta':
+ step_rule = AdaDelta()
+elif step_rule == 'momentum':
+ step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
+else:
+ assert(False)
+
+class CCHLSTM(BaseRecurrent, Initializable):
+ def __init__(self, io_dim, hidden_dims, cond_cert, activation=None, **kwargs):
+ super(CCHLSTM, self).__init__(**kwargs)
+
+ self.cond_cert = cond_cert
+
+ self.io_dim = io_dim
+ self.hidden_dims = hidden_dims
+
+ self.children = []
+ self.layers = []
+
+ self.softmax = Softmax()
+ self.children.append(self.softmax)
+
+ for i, d in enumerate(hidden_dims):
+ i0 = LookupTable(length=io_dim,
+ dim=4*d,
+ name='i0-%d'%i)
+ self.children.append(i0)
+
+ if i > 0:
+ i1 = Linear(input_dim=hidden_dims[i-1],
+ output_dim=4*d,
+ name='i1-%d'%i)
+ self.children.append(i1)
+ else:
+ i1 = None
+
+ lstm = LSTM(dim=d, activation=activation,
+ name='LSTM-%d'%i)
+ self.children.append(lstm)
+
+ o = Linear(input_dim=d,
+ output_dim=io_dim,
+ name='o-%d'%i)
+ self.children.append(o)
+
+ self.layers.append((i0, i1, lstm, o))
+
+
+ @recurrent(sequences=['inputs'], contexts=[])
+ def apply(self, inputs, **kwargs):
+
+ l0i, _, l0l, l0o = self.layers[0]
+ l0iv = l0i.apply(inputs)
+ new_states0, new_cells0 = l0l.apply(states=kwargs['states0'],
+ cells=kwargs['cells0'],
+ inputs=l0iv,
+ iterate=False)
+ l0ov = l0o.apply(new_states0)
+
+ pos = l0ov
+ ps = new_states0
+
+ passnext = tensor.ones((inputs.shape[0], 1))
+ out_sc = [new_states0, new_cells0, passnext]
+
+ for i, (cch, (i0, i1, l, o)) in enumerate(zip(self.cond_cert, self.layers[1:])):
+ pop = self.softmax.apply(pos)
+ best = pop.max(axis=1)
+ passnext = passnext * tensor.le(best, cch)[:, None]
+
+ i0v = i0.apply(inputs)
+ i1v = i1.apply(ps)
+
+ prev_states = kwargs['states%d'%i]
+ prev_cells = kwargs['cells%d'%i]
+ new_states, new_cells = l.apply(inputs=i0v + i1v,
+ states=prev_states,
+ cells=prev_cells,
+ iterate=False)
+ new_states = tensor.switch(passnext, new_states, prev_states)
+ new_cells = tensor.switch(passnext, new_cells, prev_cells)
+ out_sc += [new_states, new_cells, passnext]
+
+ ov = o.apply(new_states)
+ pos = tensor.switch(passnext, pos + ov, pos)
+ ps = new_states
+
+ return [pos] + out_sc
+
+ def get_dim(self, name):
+ dims = {'pred': self.io_dim}
+ for i, d in enumerate(self.hidden_dims):
+ dims['states%d'%i] = dims['cells%d'%i] = d
+ if name in dims:
+ return dims[name]
+ return super(CCHLSTM, self).get_dim(name)
+
+ @apply.property('states')
+ def apply_states(self):
+ ret = []
+ for i in range(len(self.hidden_dims)):
+ ret += ['states%d'%i, 'cells%d'%i]
+ return ret
+
+ @apply.property('outputs')
+ def apply_outputs(self):
+ ret = ['pred']
+ for i in range(len(self.hidden_dims)):
+ ret += ['states%d'%i, 'cells%d'%i, 'active%d'%i]
+ return ret
+
+
+class Model():
+ def __init__(self):
+ inp = tensor.lmatrix('bytes')
+
+ # Make state vars
+ state_vars = {}
+ for i, d in enumerate(hidden_dims):
+ state_vars['states%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
+ .astype(theano.config.floatX),
+ name='states%d'%i)
+ state_vars['cells%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
+ .astype(theano.config.floatX),
+ name='cells%d'%i)
+ # Construct brick
+ cchlstm = CCHLSTM(io_dim=io_dim,
+ hidden_dims=hidden_dims,
+ cond_cert=cond_cert,
+ activation=activation_function)
+
+ # Apply it
+ outs = cchlstm.apply(inputs=inp.dimshuffle(1, 0),
+ **state_vars)
+ states = []
+ active_prop = []
+ for i in range(len(hidden_dims)):
+ states.append((state_vars['states%d'%i], outs[3*i+1][-1, :, :]))
+ states.append((state_vars['cells%d'%i], outs[3*i+2][-1, :, :]))
+ active_prop.append(outs[3*i+3].mean())
+ active_prop[-1].name = 'active_prop_%d'%i
+
+ out = outs[0].dimshuffle(1, 0, 2)
+
+ # Do prediction and calculate cost
+ pred = out.argmax(axis=2)
+
+ cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
+ out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
+ io_dim)))
+ error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
+
+ # Initialize all bricks
+ for brick in [cchlstm]:
+ brick.weights_init = IsotropicGaussian(0.1)
+ brick.biases_init = Constant(0.)
+ brick.initialize()
+
+ # Apply noise and dropoutvars
+ cg = ComputationGraph([cost, error_rate])
+ if w_noise_std > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, w_noise_std)
+ [cost_reg, error_rate_reg] = cg.outputs
+
+ self.sgd_cost = cost_reg
+ self.monitor_vars = [[cost, cost_reg],
+ [error_rate, error_rate_reg],
+ active_prop]
+
+ cost.name = 'cost'
+ cost_reg.name = 'cost_reg'
+ error_rate.name = 'error_rate'
+ error_rate_reg.name = 'error_rate_reg'
+
+ self.out = out
+ self.pred = pred
+
+ self.states = states
+
diff --git a/dgsrnn.py b/dgsrnn.py
index 427a026..d6d93ff 100644
--- a/dgsrnn.py
+++ b/dgsrnn.py
@@ -2,6 +2,8 @@ import theano
from theano import tensor
import numpy
+from theano.tensor.shared_randomstreams import RandomStreams
+
from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
from blocks.bricks.base import application, lazy
@@ -13,6 +15,8 @@ from blocks.filter import VariableFilter
from blocks.roles import WEIGHT, INITIAL_STATE, add_role
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+rng = RandomStreams()
+
class TRectifier(Activation):
@application(inputs=['input_'], outputs=['output'])
def apply(self, input_):
@@ -21,8 +25,8 @@ class TRectifier(Activation):
# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
# divided in chunks of lengh 'seq_div_size'
num_seqs = 10
-seq_len = 2000
-seq_div_size = 100
+seq_len = 1000
+seq_div_size = 5
io_dim = 256
@@ -36,20 +40,21 @@ output_hidden_activations = []
weight_noise_std = 0.05
-output_h_dropout = 0.5
+output_h_dropout = 0.0
+drop_update = 0.0
-l1_state = 0.01
-l1_reset = 0.01
+l1_state = 0.00
+l1_reset = 0.1
step_rule = 'momentum'
-learning_rate = 0.01
+learning_rate = 0.001
momentum = 0.99
-param_desc = '%s,t%s,o%s-n%s-d%s-L1:%s,%s-%s' % (
+param_desc = '%s,t%s,o%s-n%s-d%s,%s-L1:%s,%s-%s' % (
repr(state_dim), repr(transition_hidden), repr(output_hidden),
repr(weight_noise_std),
- repr(output_h_dropout),
+ repr(output_h_dropout), repr(drop_update),
repr(l1_state), repr(l1_reset),
step_rule
)
@@ -105,13 +110,15 @@ class DGSRNN(BaseRecurrent, Initializable):
return self.state_dim
return super(GFGRU, self).get_dim(name)
- @recurrent(sequences=['inputs'], states=['state'],
+ @recurrent(sequences=['inputs', 'drop_updates_mask'], states=['state'],
outputs=['state', 'reset'], contexts=[])
- def apply(self, inputs=None, state=None):
+ def apply(self, inputs=None, drop_updates_mask=None, state=None):
inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1))
reset_v = self.reset.apply(inter_v)
update_v = self.update.apply(inter_v)
+ reset_v = reset_v * drop_updates_mask
+
new_state = state * (1 - reset_v) + reset_v * update_v
return new_state, reset_v
@@ -141,7 +148,11 @@ class Model():
prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX),
name='state')
- states, resets = dgsrnn.apply(in_onehot.dimshuffle(1, 0, 2), state=prev_state)
+ states, resets = dgsrnn.apply(inputs=in_onehot.dimshuffle(1, 0, 2),
+ drop_updates_mask=rng.binomial(size=(inp.shape[1], inp.shape[0], state_dim),
+ p=1-drop_update,
+ dtype=theano.config.floatX),
+ state=prev_state)
states = states.dimshuffle(1, 0, 2)
resets = resets.dimshuffle(1, 0, 2)
diff --git a/paramsaveload.py b/paramsaveload.py
index e44889d..9c05926 100644
--- a/paramsaveload.py
+++ b/paramsaveload.py
@@ -19,13 +19,13 @@ class SaveLoadParams(SimpleExtension):
def do_save(self):
with open(self.path, 'w') as f:
logger.info('Saving parameters to %s...'%self.path)
- cPickle.dump(self.model.get_param_values(), f, protocol=cPickle.HIGHEST_PROTOCOL)
+ cPickle.dump(self.model.get_parameter_values(), f, protocol=cPickle.HIGHEST_PROTOCOL)
def do_load(self):
try:
with open(self.path, 'r') as f:
logger.info('Loading parameters from %s...'%self.path)
- self.model.set_param_values(cPickle.load(f))
+ self.model.set_parameter_values(cPickle.load(f))
except IOError:
pass
diff --git a/train.py b/train.py
index 61f6663..58bff1e 100755
--- a/train.py
+++ b/train.py
@@ -14,13 +14,18 @@ from theano.tensor.shared_randomstreams import RandomStreams
from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER
from blocks.extensions import Printing, SimpleExtension
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring
-from blocks.extras.extensions.plot import Plot
from blocks.extensions.saveload import Checkpoint, Load
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent, StepRule, CompositeRule
+try:
+ from blocks.extras.extensions.plot import Plot
+ plot_avail = True
+except ImportError:
+ plot_avail = False
+
import datastream
from paramsaveload import SaveLoadParams
from gentext import GenText
@@ -63,18 +68,34 @@ class ResetStates(SimpleExtension):
def train_model(m, train_stream, dump_path=None):
# Define the model
- model = Model(m.cost)
+ model = Model(m.sgd_cost)
- cg = ComputationGraph(m.cost_reg)
- algorithm = GradientDescent(cost=m.cost_reg,
+ cg = ComputationGraph(m.sgd_cost)
+ algorithm = GradientDescent(cost=m.sgd_cost,
step_rule=CompositeRule([
ElementwiseRemoveNotFinite(),
config.step_rule]),
- params=cg.parameters)
+ parameters=cg.parameters)
algorithm.add_updates(m.states)
- extensions = []
+ monitor_vars = [v for p in m.monitor_vars for v in p]
+ extensions = [
+ TrainingDataMonitoring(
+ monitor_vars,
+ prefix='train', every_n_epochs=1),
+ Printing(every_n_epochs=1, after_epoch=False),
+
+ ResetStates([v for v, _ in m.states], after_epoch=True)
+ ]
+ if plot_avail:
+ plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars]
+ extensions.append(
+ Plot(document='text_'+model_name+'_'+config.param_desc,
+ channels=plot_channels,
+ server_url='http://eos6:5006/',
+ every_n_epochs=1, after_epoch=False)
+ )
if config.save_freq is not None and dump_path is not None:
extensions.append(
SaveLoadParams(path=dump_path+'.pkl',
@@ -105,19 +126,7 @@ def train_model(m, train_stream, dump_path=None):
model=model,
data_stream=train_stream,
algorithm=algorithm,
- extensions=extensions + [
- TrainingDataMonitoring(
- [m.cost_reg, m.error_rate_reg, m.cost, m.error_rate],
- prefix='train', every_n_epochs=1),
- Printing(every_n_epochs=1, after_epoch=False),
- Plot(document='text_'+model_name+'_'+config.param_desc,
- channels=[['train_cost', 'train_cost_reg'],
- ['train_error_rate', 'train_error_rate_reg']],
- server_url='http://eos21:4201/',
- every_n_epochs=1, after_epoch=False),
-
- ResetStates([v for v, _ in m.states], after_epoch=True)
- ]
+ extensions=extensions
)
main_loop.run()
@@ -131,10 +140,6 @@ if __name__ == "__main__":
# Build model
m = config.Model()
- m.cost.name = 'cost'
- m.cost_reg.name = 'cost_reg'
- m.error_rate.name = 'error_rate'
- m.error_rate_reg.name = 'error_rate_reg'
m.pred.name = 'pred'
# Train the model