summaryrefslogtreecommitdiff
path: root/model
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2016-03-29 12:27:35 +0200
committerAlex Auvolat <alex@adnab.me>2016-03-29 12:27:35 +0200
commit30faf44a08edcc2075362c4633f6b1d291944cd3 (patch)
treebb4a53766d87fc3437999631eb08158a4a26e812 /model
parent62c05c06013e7204c1e7681a7e2ac7541f2acbcb (diff)
downloadtext-rnn-30faf44a08edcc2075362c4633f6b1d291944cd3.tar.gz
text-rnn-30faf44a08edcc2075362c4633f6b1d291944cd3.zip
This HPC stuff doesn't work very well.
Diffstat (limited to 'model')
-rw-r--r--model/hpc_gru.py134
-rw-r--r--model/hpc_lstm.py16
2 files changed, 147 insertions, 3 deletions
diff --git a/model/hpc_gru.py b/model/hpc_gru.py
new file mode 100644
index 0000000..bd01633
--- /dev/null
+++ b/model/hpc_gru.py
@@ -0,0 +1,134 @@
+# HPC-GRU : Hierarchical Predictive Coding GRU
+
+import theano
+from theano import tensor
+import numpy
+
+from blocks.bricks import Softmax, Tanh, Logistic, Linear, MLP, Identity
+from blocks.bricks.recurrent import GatedRecurrent
+
+from blocks.filter import VariableFilter
+from blocks.roles import WEIGHT
+from blocks.graph import ComputationGraph, apply_noise
+
+
+class Model():
+ def __init__(self, config):
+ inp = tensor.imatrix('bytes')
+
+ embed = theano.shared(config.embedding_matrix.astype(theano.config.floatX),
+ name='embedding_matrix')
+ in_repr = embed[inp.flatten(), :].reshape((inp.shape[0], inp.shape[1], config.repr_dim))
+ in_repr.name = 'in_repr'
+
+ bricks = []
+ states = []
+
+ # Construct predictive GRU hierarchy
+ hidden = []
+ costs = []
+ next_target = in_repr.dimshuffle(1, 0, 2)
+ for i, (hdim, cf, q) in enumerate(zip(config.hidden_dims,
+ config.cost_factors,
+ config.hidden_q)):
+ init_state = theano.shared(numpy.zeros((config.num_seqs, hdim)).astype(theano.config.floatX),
+ name='st0_%d'%i)
+
+ linear = Linear(input_dim=config.repr_dim, output_dim=3*hdim,
+ name="lstm_in_%d"%i)
+ lstm = GatedRecurrent(dim=hdim, activation=config.activation_function,
+ name="lstm_rec_%d"%i)
+ linear2 = Linear(input_dim=hdim, output_dim=config.repr_dim, name='lstm_out_%d'%i)
+ tanh = Tanh('lstm_out_tanh_%d'%i)
+ bricks += [linear, lstm, linear2, tanh]
+ if i > 0:
+ linear1 = Linear(input_dim=config.hidden_dims[i-1], output_dim=3*hdim,
+ name='lstm_in2_%d'%i)
+ bricks += [linear1]
+
+ next_target = tensor.cast(next_target, dtype=theano.config.floatX)
+ inter = linear.apply(theano.gradient.disconnected_grad(next_target))
+ if i > 0:
+ inter += linear1.apply(theano.gradient.disconnected_grad(hidden[-1][:-1,:,:]))
+ new_hidden = lstm.apply(inputs=inter[:,:,:hdim],
+ gate_inputs=inter[:,:,hdim:],
+ states=init_state)
+ states.append((init_state, new_hidden[-1, :, :]))
+
+ hidden += [tensor.concatenate([init_state[None,:,:], new_hidden],axis=0)]
+ pred = tanh.apply(linear2.apply(hidden[-1][:-1,:,:]))
+ costs += [numpy.float32(cf) * (-next_target * pred).sum(axis=2).mean()]
+ costs += [numpy.float32(cf) * q * abs(pred).sum(axis=2).mean()]
+ diff = next_target - pred
+ next_target = tensor.ge(diff, 0.5) - tensor.le(diff, -0.5)
+
+
+ # Construct output from hidden states
+ hidden = [s.dimshuffle(1, 0, 2) for s in hidden]
+
+ out_parts = []
+ out_dims = config.out_hidden + [config.io_dim]
+ for i, (dim, state) in enumerate(zip(config.hidden_dims, hidden)):
+ pred_linear = Linear(input_dim=dim, output_dim=out_dims[0],
+ name='pred_linear_%d'%i)
+ bricks.append(pred_linear)
+ lin = theano.gradient.disconnected_grad(state)
+ out_parts.append(pred_linear.apply(lin))
+
+ # Do prediction and calculate cost
+ out = sum(out_parts)
+
+ if len(out_dims) > 1:
+ out = config.out_hidden_act[0](name='out_act0').apply(out)
+ mlp = MLP(dims=out_dims,
+ activations=[x(name='out_act%d'%i) for i, x in enumerate(config.out_hidden_act[1:])]
+ +[Identity()],
+ name='out_mlp')
+ bricks.append(mlp)
+ out = mlp.apply(out.reshape((inp.shape[0]*(inp.shape[1]+1),-1))
+ ).reshape((inp.shape[0],inp.shape[1]+1,-1))
+
+ pred = out.argmax(axis=2)
+
+ cost = Softmax().categorical_cross_entropy(inp.flatten(),
+ out[:,:-1,:].reshape((inp.shape[0]*inp.shape[1],
+ config.io_dim))).mean()
+ error_rate = tensor.neq(inp.flatten(), pred[:,:-1].flatten()).mean()
+
+ sgd_cost = cost + sum(costs)
+
+ # Initialize all bricks
+ for brick in bricks:
+ brick.weights_init = config.weights_init
+ brick.biases_init = config.biases_init
+ brick.initialize()
+
+ # apply noise
+ cg = ComputationGraph([sgd_cost, cost, error_rate]+costs)
+ if config.weight_noise > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, config.weight_noise)
+ sgd_cost = cg.outputs[0]
+ cost = cg.outputs[1]
+ error_rate = cg.outputs[2]
+ costs = cg.outputs[3:]
+
+
+ # put stuff into self that is usefull for training or extensions
+ self.sgd_cost = sgd_cost
+
+ sgd_cost.name = 'sgd_cost'
+ for i in range(len(costs)):
+ costs[i].name = 'pred_cost_%d'%i
+ cost.name = 'cost'
+ error_rate.name = 'error_rate'
+ self.monitor_vars = [costs, [cost],
+ [error_rate]]
+
+ self.out = out[:,1:,:]
+ self.pred = pred[:,1:]
+
+ self.states = states
+
+
+# vim: set sts=4 ts=4 sw=4 tw=0 et :
diff --git a/model/hpc_lstm.py b/model/hpc_lstm.py
index 395646c..d3c33a2 100644
--- a/model/hpc_lstm.py
+++ b/model/hpc_lstm.py
@@ -10,7 +10,7 @@ from blocks.initialization import IsotropicGaussian, Constant
from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
-from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+from blocks.graph import ComputationGraph, apply_noise
class Model():
@@ -103,10 +103,20 @@ class Model():
# Initialize all bricks
for brick in bricks:
- brick.weights_init = IsotropicGaussian(0.1)
- brick.biases_init = Constant(0.)
+ brick.weights_init = config.weights_init
+ brick.biases_init = config.biases_init
brick.initialize()
+ # apply noise
+ cg = ComputationGraph([sgd_cost, cost, error_rate]+costs)
+ if config.weight_noise > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, config.weight_noise)
+ sgd_cost = cg.outputs[0]
+ cost = cg.outputs[1]
+ error_rate = cg.outputs[2]
+ costs = cg.outputs[3:]
+
# put stuff into self that is usefull for training or extensions
self.sgd_cost = sgd_cost