diff options
author | Alex Auvolat <alex@adnab.me> | 2016-03-08 19:43:56 +0100 |
---|---|---|
committer | Alex Auvolat <alex@adnab.me> | 2016-03-08 19:43:56 +0100 |
commit | 0cc79a9d41d3829a75e1d0f953d706e933e9d194 (patch) | |
tree | 62511b71742c1c1ca47f5f03ed45af927b7554c8 /model/hpc_lstm.py | |
parent | 3601cb8e9d99ccd3b7e8791415bb64206b6c530e (diff) | |
download | text-rnn-0cc79a9d41d3829a75e1d0f953d706e933e9d194.tar.gz text-rnn-0cc79a9d41d3829a75e1d0f953d706e933e9d194.zip |
Nice predictive coding model
Diffstat (limited to 'model/hpc_lstm.py')
-rw-r--r-- | model/hpc_lstm.py | 10 |
1 files changed, 6 insertions, 4 deletions
diff --git a/model/hpc_lstm.py b/model/hpc_lstm.py index 3e4e878..5bad8af 100644 --- a/model/hpc_lstm.py +++ b/model/hpc_lstm.py @@ -49,6 +49,7 @@ class Model(): name='lstm_in2_%d'%i) bricks += [linear1] + next_target = tensor.cast(next_target, dtype=theano.config.floatX) inter = linear.apply(theano.gradient.disconnected_grad(next_target)) if i > 0: inter += linear1.apply(theano.gradient.disconnected_grad(hidden[-1][:-1,:,:])) @@ -60,9 +61,10 @@ class Model(): hidden += [tensor.concatenate([init_state[None,:,:], new_hidden],axis=0)] pred = tanh.apply(linear2.apply(hidden[-1][:-1,:,:])) + costs += [numpy.float32(cf) * (-next_target * pred).sum(axis=2).mean()] + costs += [numpy.float32(cf) * q * abs(pred).sum(axis=2).mean()] diff = next_target - pred - costs += [numpy.float32(cf) * ((abs(next_target)+q)*(diff**2)).sum(axis=2).mean()] - next_target = diff*esf + next_target = tensor.ge(diff, 0.5) - tensor.le(diff, -0.5) # Construct output from hidden states @@ -74,7 +76,7 @@ class Model(): pred_linear = Linear(input_dim=dim, output_dim=out_dims[0], name='pred_linear_%d'%i) bricks.append(pred_linear) - lin = state if i == 0 else theano.gradient.disconnected_grad(state) + lin = theano.gradient.disconnected_grad(state) out_parts.append(pred_linear.apply(lin)) # Do prediction and calculate cost @@ -98,7 +100,7 @@ class Model(): error_rate = tensor.neq(inp.flatten(), pred[:,:-1].flatten()).mean() sgd_cost = cost + sum(costs) - + # Initialize all bricks for brick in bricks: brick.weights_init = IsotropicGaussian(0.1) |