summaryrefslogtreecommitdiff
path: root/model/cchlstm.py
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2016-03-08 13:26:28 +0100
committerAlex Auvolat <alex@adnab.me>2016-03-08 13:26:28 +0100
commit2f479926c16d2911d0dd878c21de082abfc5b237 (patch)
treeb399e9ad9af04a9449334dff1a47449808b7ca13 /model/cchlstm.py
parent23093608e0edc43477c3a2ed804ae1016790f7e4 (diff)
downloadtext-rnn-2f479926c16d2911d0dd878c21de082abfc5b237.tar.gz
text-rnn-2f479926c16d2911d0dd878c21de082abfc5b237.zip
Revive project
Diffstat (limited to 'model/cchlstm.py')
-rw-r--r--model/cchlstm.py248
1 files changed, 248 insertions, 0 deletions
diff --git a/model/cchlstm.py b/model/cchlstm.py
new file mode 100644
index 0000000..78c9a1f
--- /dev/null
+++ b/model/cchlstm.py
@@ -0,0 +1,248 @@
+import theano
+from theano import tensor
+import numpy
+
+from theano.tensor.shared_randomstreams import RandomStreams
+
+from blocks.algorithms import Momentum, AdaDelta, RMSProp
+from blocks.bricks import Tanh, Softmax, Linear, MLP, Initializable
+from blocks.bricks.lookup import LookupTable
+from blocks.bricks.recurrent import LSTM, BaseRecurrent, recurrent
+from blocks.initialization import IsotropicGaussian, Constant
+
+from blocks.filter import VariableFilter
+from blocks.roles import WEIGHT
+from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+
+rng = RandomStreams()
+
+# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
+# divided in chunks of lengh 'seq_div_size'
+num_seqs = 50
+seq_len = 2000
+seq_div_size = 100
+
+io_dim = 256
+
+# Model structure
+hidden_dims = [512, 512, 512, 512, 512]
+activation_function = Tanh()
+
+cond_cert = [0.5, 0.5, 0.5, 0.5]
+block_prob = [0.1, 0.1, 0.1, 0.1]
+
+# Regularization
+w_noise_std = 0.02
+
+# Step rule
+step_rule = 'adadelta'
+learning_rate = 0.1
+momentum = 0.9
+
+
+param_desc = '%s(x%sp%s)-n%s-%dx%d(%d)-%s' % (
+ repr(hidden_dims), repr(cond_cert), repr(block_prob),
+ repr(w_noise_std),
+ num_seqs, seq_len, seq_div_size,
+ step_rule
+ )
+
+save_freq = 5
+on_irc = False
+
+# parameters for sample generation
+sample_len = 200
+sample_temperature = 0.7 #0.5
+sample_freq = 1
+
+if step_rule == 'rmsprop':
+ step_rule = RMSProp()
+elif step_rule == 'adadelta':
+ step_rule = AdaDelta()
+elif step_rule == 'momentum':
+ step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
+else:
+ assert(False)
+
+class CCHLSTM(BaseRecurrent, Initializable):
+ def __init__(self, io_dim, hidden_dims, cond_cert, activation=None, **kwargs):
+ super(CCHLSTM, self).__init__(**kwargs)
+
+ self.cond_cert = cond_cert
+
+ self.io_dim = io_dim
+ self.hidden_dims = hidden_dims
+
+ self.children = []
+ self.layers = []
+
+ self.softmax = Softmax()
+ self.children.append(self.softmax)
+
+ for i, d in enumerate(hidden_dims):
+ i0 = LookupTable(length=io_dim,
+ dim=4*d,
+ name='i0-%d'%i)
+ self.children.append(i0)
+
+ if i > 0:
+ i1 = Linear(input_dim=hidden_dims[i-1],
+ output_dim=4*d,
+ name='i1-%d'%i)
+ self.children.append(i1)
+ else:
+ i1 = None
+
+ lstm = LSTM(dim=d, activation=activation,
+ name='LSTM-%d'%i)
+ self.children.append(lstm)
+
+ o = Linear(input_dim=d,
+ output_dim=io_dim,
+ name='o-%d'%i)
+ self.children.append(o)
+
+ self.layers.append((i0, i1, lstm, o))
+
+
+ @recurrent(contexts=[])
+ def apply(self, inputs, **kwargs):
+
+ l0i, _, l0l, l0o = self.layers[0]
+ l0iv = l0i.apply(inputs)
+ new_states0, new_cells0 = l0l.apply(states=kwargs['states0'],
+ cells=kwargs['cells0'],
+ inputs=l0iv,
+ iterate=False)
+ l0ov = l0o.apply(new_states0)
+
+ pos = l0ov
+ ps = new_states0
+
+ passnext = tensor.ones((inputs.shape[0],))
+ out_sc = [new_states0, new_cells0, passnext]
+
+ for i, (cch, (i0, i1, l, o)) in enumerate(zip(self.cond_cert, self.layers[1:])):
+ pop = self.softmax.apply(pos)
+ best = pop.max(axis=1)
+ passnext = passnext * tensor.le(best, cch) * kwargs['pass%d'%i]
+
+ i0v = i0.apply(inputs)
+ i1v = i1.apply(ps)
+
+ prev_states = kwargs['states%d'%i]
+ prev_cells = kwargs['cells%d'%i]
+ new_states, new_cells = l.apply(inputs=i0v + i1v,
+ states=prev_states,
+ cells=prev_cells,
+ iterate=False)
+ new_states = tensor.switch(passnext[:, None], new_states, prev_states)
+ new_cells = tensor.switch(passnext[:, None], new_cells, prev_cells)
+ out_sc += [new_states, new_cells, passnext]
+
+ ov = o.apply(new_states)
+ pos = tensor.switch(passnext[:, None], pos + ov, pos)
+ ps = new_states
+
+ return [pos] + out_sc
+
+ def get_dim(self, name):
+ dims = {'pred': self.io_dim}
+ for i, d in enumerate(self.hidden_dims):
+ dims['states%d'%i] = dims['cells%d'%i] = d
+ if name in dims:
+ return dims[name]
+ return super(CCHLSTM, self).get_dim(name)
+
+ @apply.property('sequences')
+ def apply_sequences(self):
+ return ['inputs'] + ['pass%d'%i for i in range(len(self.hidden_dims)-1)]
+
+ @apply.property('states')
+ def apply_states(self):
+ ret = []
+ for i in range(len(self.hidden_dims)):
+ ret += ['states%d'%i, 'cells%d'%i]
+ return ret
+
+ @apply.property('outputs')
+ def apply_outputs(self):
+ ret = ['pred']
+ for i in range(len(self.hidden_dims)):
+ ret += ['states%d'%i, 'cells%d'%i, 'active%d'%i]
+ return ret
+
+
+class Model():
+ def __init__(self):
+ inp = tensor.lmatrix('bytes')
+
+ # Make state vars
+ state_vars = {}
+ for i, d in enumerate(hidden_dims):
+ state_vars['states%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
+ .astype(theano.config.floatX),
+ name='states%d'%i)
+ state_vars['cells%d'%i] = theano.shared(numpy.zeros((num_seqs, d))
+ .astype(theano.config.floatX),
+ name='cells%d'%i)
+ # Construct brick
+ cchlstm = CCHLSTM(io_dim=io_dim,
+ hidden_dims=hidden_dims,
+ cond_cert=cond_cert,
+ activation=activation_function)
+
+ # Random pass
+ passdict = {}
+ for i, p in enumerate(block_prob):
+ passdict['pass%d'%i] = rng.binomial(size=(inp.shape[1], inp.shape[0]), p=1-p)
+
+ # Apply it
+ outs = cchlstm.apply(inputs=inp.dimshuffle(1, 0),
+ **dict(state_vars.items() + passdict.items()))
+ states = []
+ active_prop = []
+ for i in range(len(hidden_dims)):
+ states.append((state_vars['states%d'%i], outs[3*i+1][-1, :, :]))
+ states.append((state_vars['cells%d'%i], outs[3*i+2][-1, :, :]))
+ active_prop.append(outs[3*i+3].mean())
+ active_prop[-1].name = 'active_prop_%d'%i
+
+ out = outs[0].dimshuffle(1, 0, 2)
+
+ # Do prediction and calculate cost
+ pred = out.argmax(axis=2)
+
+ cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
+ out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
+ io_dim)))
+ error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
+
+ # Initialize all bricks
+ for brick in [cchlstm]:
+ brick.weights_init = IsotropicGaussian(0.1)
+ brick.biases_init = Constant(0.)
+ brick.initialize()
+
+ # Apply noise and dropoutvars
+ cg = ComputationGraph([cost, error_rate])
+ if w_noise_std > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, w_noise_std)
+ [cost_reg, error_rate_reg] = cg.outputs
+
+ self.sgd_cost = cost_reg
+ self.monitor_vars = [[cost, cost_reg],
+ [error_rate, error_rate_reg],
+ active_prop]
+
+ cost.name = 'cost'
+ cost_reg.name = 'cost_reg'
+ error_rate.name = 'error_rate'
+ error_rate_reg.name = 'error_rate_reg'
+
+ self.out = out
+ self.pred = pred
+
+ self.states = states
+