#!/usr/bin/env python
import logging
import numpy
import sys
import importlib
from contextlib import closing
import theano
from theano import tensor
from theano.tensor.shared_randomstreams import RandomStreams
from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER
from blocks.extensions import Printing, SimpleExtension
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring
from blocks.extras.extensions.plot import Plot
from blocks.extensions.saveload import Checkpoint, Load
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent
import datastream
# from apply_model import Apply
logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)
sys.setrecursionlimit(1500)
if __name__ == "__main__":
if len(sys.argv) != 2:
print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
sys.exit(1)
model_name = sys.argv[1]
config = importlib.import_module('%s' % model_name)
class GenText(SimpleExtension):
def __init__(self, model, init_text, max_bytes, **kwargs):
super(GenText, self).__init__(**kwargs)
self.init_text = init_text
self.max_bytes = max_bytes
out = model.out[:, -1, :] / numpy.float32(config.sample_temperature)
prob = tensor.nnet.softmax(out)
cg = ComputationGraph([prob])
assert(len(cg.inputs) == 1)
assert(cg.inputs[0].name == 'bytes')
state_vars = [theano.shared(v[0:1, :].zeros_like().eval(), v.name+'-gen')
for v, _ in model.states]
givens = [(v, x) for (v, _), x in zip(model.states, state_vars)]
updates= [(x, upd) for x, (_, upd) in zip(state_vars, model.states)]
self.f = theano.function(inputs=cg.inputs, outputs=[prob],
givens=givens, updates=updates)
self.reset_states = theano.function(inputs=[], outputs=[],
updates=[(v, v.zeros_like()) for v in state_vars])
def do(self, which_callback, *args):
print "Sample:"
print "-------"
self.reset_states()
v = numpy.array([ord(i) for i in self.init_text],
dtype='int16')[None, :]
prob, = self.f(v)
sys.stdout.write(self.init_text)
while v.shape[1] < self.max_bytes:
prob = prob / 1.00001
pred = numpy.random.multinomial(1, prob[0, :]).nonzero()[0][0]
v = numpy.concatenate([v, pred[None, None]], axis=1)
sys.stdout.write(chr(int(pred)))
sys.stdout.flush()
prob, = self.f(pred[None, None])
print
print "-------"
print
class ResetStates(SimpleExtension):
def __init__(self, state_vars, **kwargs):
super(ResetStates, self).__init__(**kwargs)
self.f = theano.function(
inputs=[], outputs=[],
updates=[(v, v.zeros_like()) for v in state_vars])
def do(self, which_callback, *args):
self.f()
def train_model(m, train_stream, dump_path=None):
# Define the model
model = Model(m.cost)
cg = ComputationGraph(m.cost_reg)
algorithm = GradientDescent(cost=m.cost_reg,
step_rule=config.step_rule,
params=cg.parameters)
algorithm.add_updates(m.states)
# Load the parameters from a dumped model
if dump_path is not None:
try:
with closing(numpy.load(dump_path)) as source:
logger.info('Loading parameters...')
param_values = {'/' + name.replace(BRICK_DELIMITER, '/'): source[name]
for name in source.keys()
if name != 'pkl' and not 'None' in name}
model.set_param_values(param_values)
except IOError:
pass
main_loop = MainLoop(
model=model,
data_stream=train_stream,
algorithm=algorithm,
extensions=[
Checkpoint(path=dump_path,
after_epoch=False,
use_cpickle=True,
every_n_epochs=config.save_freq),
TrainingDataMonitoring(
[m.cost_reg, m.error_rate_reg, m.cost, m.error_rate],
prefix='train', every_n_epochs=1),
Printing(every_n_epochs=1, after_epoch=False),
Plot(document='text_'+model_name+'_'+config.param_desc,
channels=[['train_cost', 'train_cost_reg'],
['train_error_rate', 'train_error_rate_reg']],
server_url='http://eos21:4201/',
every_n_epochs=1, after_epoch=False),
GenText(m, '\nalex\ttu crois ?\n', config.sample_len,
every_n_epochs=config.sample_freq,
after_epoch=False, before_training=True),
ResetStates([v for v, _ in m.states], after_epoch=True)
]
)
main_loop.run()
if __name__ == "__main__":
# Build datastream
train_stream = datastream.setup_datastream('data/logcompil.txt',
config.num_seqs,
config.seq_len,
config.seq_div_size)
# Build model
m = config.Model()
m.cost.name = 'cost'
m.cost_reg.name = 'cost_reg'
m.error_rate.name = 'error_rate'
m.error_rate_reg.name = 'error_rate_reg'
m.pred.name = 'pred'
# Train the model
saveloc = 'model_data/%s-%s' % (model_name, config.param_desc)
train_model(m, train_stream, dump_path=saveloc)