summaryrefslogblamecommitdiff
path: root/train.py
blob: a8c246a5e9b2d603226f007701ea7d0e324823a0 (plain) (tree)
1
2
3
4
5
6
7
8
9






                     

                              

                         
                                                            
 
                                                                                    
                                                       
                                                                                     

                                                       



                                             






                                    

                           







                                                             

                                                              

                                               


                                  



                                                                            

                                            
 








                                                                                              

                                        





                           
                                                         

                                               
 
                                        
                                          
                                 










                                                                          
 









                                                              
 
                                                 



                         



                                                           
 
                                   
 


                                             
                                                          
                                                    


                                                                                      
                                                    


                       




                                 
                                      


                                                        
 

                                                                     

                                                          
                                                                   

                                                                         
                                                 
                                                      
 



                                                                   



                   



                                                                    


                                                                   









                                            

                                                                  
 
#!/usr/bin/env python

import logging
import numpy
import sys
import importlib

from contextlib import closing

import theano
from theano import tensor
from theano.tensor.shared_randomstreams import RandomStreams

from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER
from blocks.extensions import Printing, SimpleExtension
from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring
from blocks.extras.extensions.plot import Plot
from blocks.extensions.saveload import Checkpoint, Load
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.algorithms import GradientDescent

import datastream
# from apply_model import Apply

logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)

sys.setrecursionlimit(1500)

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
        sys.exit(1)
    model_name = sys.argv[1]
    config = importlib.import_module('%s' % model_name)


class GenText(SimpleExtension):
    def __init__(self, model, init_text, max_bytes, **kwargs):
        super(GenText, self).__init__(**kwargs)
        
        self.init_text = init_text
        self.max_bytes = max_bytes

        out = model.out[:, -1, :] / numpy.float32(config.sample_temperature)
        prob = tensor.nnet.softmax(out)

        cg = ComputationGraph([prob])
        assert(len(cg.inputs) == 1)
        assert(cg.inputs[0].name == 'bytes')

        state_vars = [theano.shared(v[0:1, :].zeros_like().eval(), v.name+'-gen')
                                for v, _ in model.states]
        givens = [(v, x) for (v, _), x in zip(model.states, state_vars)]
        updates= [(x, upd) for x, (_, upd) in zip(state_vars, model.states)] 

        self.f = theano.function(inputs=cg.inputs, outputs=[prob],
                                 givens=givens, updates=updates)
        self.reset_states = theano.function(inputs=[], outputs=[],
                                            updates=[(v, v.zeros_like()) for v in state_vars])

    def do(self, which_callback, *args):

        print "Sample:"
        print "-------"

        self.reset_states()

        v = numpy.array([ord(i) for i in self.init_text],
                        dtype='int16')[None, :]
        prob, = self.f(v)

        sys.stdout.write(self.init_text)
        while v.shape[1] < self.max_bytes:
            prob = prob / 1.00001
            pred = numpy.random.multinomial(1, prob[0, :]).nonzero()[0][0]

            v = numpy.concatenate([v, pred[None, None]], axis=1)
            sys.stdout.write(chr(int(pred)))
            sys.stdout.flush()

            prob, = self.f(pred[None, None])
        print
        print "-------"
        print


class ResetStates(SimpleExtension):
    def __init__(self, state_vars, **kwargs):
        super(ResetStates, self).__init__(**kwargs)

        self.f = theano.function(
            inputs=[], outputs=[],
            updates=[(v, v.zeros_like()) for v in state_vars])

    def do(self, which_callback, *args):
        self.f()

def train_model(m, train_stream, dump_path=None):

    # Define the model
    model = Model(m.cost)

    cg = ComputationGraph(m.cost_reg)
    algorithm = GradientDescent(cost=m.cost_reg,
                                step_rule=config.step_rule,
                                params=cg.parameters)

    algorithm.add_updates(m.states)

    # Load the parameters from a dumped model
    if dump_path is not None:
        try:
            with closing(numpy.load(dump_path)) as source:
                logger.info('Loading parameters...')
                param_values = {'/' + name.replace(BRICK_DELIMITER, '/'): source[name]
                                    for name in source.keys()
                                    if name != 'pkl' and not 'None' in name}
                model.set_param_values(param_values)
        except IOError:
            pass

    main_loop = MainLoop(
        model=model,
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=[
            Checkpoint(path=dump_path,
                       after_epoch=False,
                       use_cpickle=True,
                       every_n_epochs=config.save_freq),

            TrainingDataMonitoring(
                [m.cost_reg, m.error_rate_reg, m.cost, m.error_rate],
                prefix='train', every_n_epochs=1),
            Printing(every_n_epochs=1, after_epoch=False),
            Plot(document='text_'+model_name+'_'+config.param_desc,
                 channels=[['train_cost', 'train_cost_reg'],
                           ['train_error_rate', 'train_error_rate_reg']],
                 server_url='http://eos21:4201/',
                 every_n_epochs=1, after_epoch=False),

            GenText(m, '\nalex\ttu crois ?\n', config.sample_len,
                    every_n_epochs=config.sample_freq,
                    after_epoch=False, before_training=True),
            ResetStates([v for v, _ in m.states], after_epoch=True)
        ]
    )
    main_loop.run()


if __name__ == "__main__":
    # Build datastream
    train_stream = datastream.setup_datastream('data/logcompil.txt',
                                               config.num_seqs,
                                               config.seq_len,
                                               config.seq_div_size)

    # Build model
    m = config.Model()
    m.cost.name = 'cost'
    m.cost_reg.name = 'cost_reg'
    m.error_rate.name = 'error_rate'
    m.error_rate_reg.name = 'error_rate_reg'
    m.pred.name = 'pred'

    # Train the model
    saveloc = 'model_data/%s-%s' % (model_name, config.param_desc)
    train_model(m, train_stream, dump_path=saveloc)